-
Notifications
You must be signed in to change notification settings - Fork 91
/
SexBreakdown.Rmd
46 lines (31 loc) · 1.03 KB
/
SexBreakdown.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
title: "Sex breakdown"
output: html_notebook
---
```{r}
plate_metadata_filename = here('00_data_ingest', '00_facs_raw_data', 'metadata_FACS.csv')
plate_metadata <- read_csv(plate_metadata_filename)
droplet_metadata_filename = here('00_data_ingest', '01_droplet_raw_data', 'metadata_droplet.csv')
droplet_metadata <- read_csv(droplet_metadata_filename)
```
```{r}
plate_metadata
```
```{r}
plate_metadata %>% filter(tissue != 'Heart') %>% group_by(tissue, mouse.id) %>% count() %>%
spread(mouse.id, n, fill = 0)
```
Bladder has 3 males and 3 females. Fat has 3 and 4. Colon has 3 and 4. Kidney has 3 and 3.
That's enough to start to ask about batch and gender effects.
```{r}
droplet_metadata %>% group_by(tissue, mouse.sex) %>% count() %>%
spread(mouse.sex, n, fill = 0)
```
Mammary: we have 2
```{r}
old_facs_anno = read_csv(here('00_data_ingest', '00_facs_raw_data', 'annotations_FACS.csv'))
```
```{r}
tcells <- old_facs_anno %>% filter(cell_ontology_class == 'T cell') %>% pull(cell)
write(tcells, file = "tcells.csv")
```