diff --git a/include/caffe/parallel.hpp b/include/caffe/parallel.hpp index b1e45ad9c04..3bf2208c3bc 100644 --- a/include/caffe/parallel.hpp +++ b/include/caffe/parallel.hpp @@ -93,7 +93,7 @@ class P2PSync : public GPUParams, public Solver::Callback, return solver_; } - static void run(shared_ptr > root, const vector& gpus); + void run(const vector& gpus); protected: void on_start(Timer* timer, ostringstream* timing); diff --git a/src/caffe/parallel.cpp b/src/caffe/parallel.cpp index c1cdd4e3727..ef04a21268e 100644 --- a/src/caffe/parallel.cpp +++ b/src/caffe/parallel.cpp @@ -384,8 +384,7 @@ void P2PSync::on_gradients_ready(Timer* timer, ostringstream* timing) { } template -void P2PSync::run(shared_ptr > root, - const vector& gpus) { +void P2PSync::run(const vector& gpus) { // Pair devices for map-reduce synchronization vector pairs; DevicePair::compute(gpus, &pairs); @@ -395,9 +394,8 @@ void P2PSync::run(shared_ptr > root, } LOG(INFO)<< "GPUs pairs " << s.str(); - SolverParameter param(root->param()); + SolverParameter param(solver_->param()); vector > > syncs(gpus.size()); - syncs[0].reset(new P2PSync(root, NULL, param)); // Build the GPU tree by finding the parent for each solver for (int attempts = 0; attempts < pairs.size(); ++attempts) { @@ -405,16 +403,17 @@ void P2PSync::run(shared_ptr > root, if (!syncs[i].get()) { P2PSync* parent = NULL; for (int j = 0; j < syncs.size(); ++j) { - if (syncs[j]) { - const SolverParameter& p = syncs[j]->solver()->param(); + P2PSync* sync = j == 0 ? this : syncs[j].get(); + if (sync) { + const SolverParameter& p = sync->solver()->param(); if (p.device_id() == pairs[i].parent()) { - parent = (P2PSync*) syncs[j].get(); + parent = sync; } } } if (parent) { param.set_device_id(pairs[i].device()); - syncs[i].reset(new P2PSync(root, parent, param)); + syncs[i].reset(new P2PSync(solver_, parent, param)); parent->children_.push_back((P2PSync*) syncs[i].get()); } } @@ -428,7 +427,7 @@ void P2PSync::run(shared_ptr > root, } // Run root solver on current thread - syncs[0]->solver_->Solve(); + solver_->Solve(); for (int i = 1; i < syncs.size(); ++i) { syncs[i]->StopInternalThread(); diff --git a/src/caffe/test/test_gradient_based_solver.cpp b/src/caffe/test/test_gradient_based_solver.cpp index c9135d64e70..957b0e484ca 100644 --- a/src/caffe/test/test_gradient_based_solver.cpp +++ b/src/caffe/test/test_gradient_based_solver.cpp @@ -8,6 +8,7 @@ #include "gtest/gtest.h" #include "caffe/common.hpp" +#include "caffe/parallel.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/solver.hpp" @@ -22,12 +23,12 @@ class GradientBasedSolverTest : public MultiDeviceTest { typedef typename TypeParam::Dtype Dtype; protected: - GradientBasedSolverTest() : - seed_(1701), num_(4), channels_(3), height_(10), width_(10) {} + GradientBasedSolverTest() {} shared_ptr > solver_; - int seed_; - int num_, channels_, height_, width_; + shared_ptr > sync_; + static const int seed_ = 1701; + static const int num_ = 4, channels_ = 3, height_ = 10, width_ = 10; Dtype delta_; // Stability constant for AdaGrad. virtual SolverParameter_SolverType solver_type() = 0; @@ -55,22 +56,35 @@ class GradientBasedSolverTest : public MultiDeviceTest { param.delta() : 0; } + // Passed as method argument, explicit field names improve readability + class Run { + public: + Run() : num(num_), num_iters(1), iter_size(1), devices(1), + const_data(false) { + } + + int num; + int num_iters; + int iter_size; + int devices; + int const_data; // Required for multi-GPU solvers to have same sequences + }; + void RunLeastSquaresSolver(const Dtype learning_rate, - const Dtype weight_decay, const Dtype momentum, const int num_iters, - const int iter_size = 1) { + const Dtype weight_decay, const Dtype momentum, const Run& run) { ostringstream proto; proto << - "max_iter: " << num_iters << " " + "max_iter: " << run.num_iters << " " "base_lr: " << learning_rate << " " "lr_policy: 'fixed' " - "iter_size: " << iter_size << " " + "iter_size: " << run.iter_size << " " "net_param { " " name: 'TestNetwork' " " layer { " " name: 'data' " " type: 'DummyData' " " dummy_data_param { " - " num: " << num_ / iter_size << " " + " num: " << run.num << " " " channels: " << channels_ << " " " height: " << height_ << " " " width: " << width_ << " " @@ -82,7 +96,7 @@ class GradientBasedSolverTest : public MultiDeviceTest { " value: 1.0 " " } " " data_filler { " - " type: 'gaussian' " + " type: '" << (run.const_data ? "constant" : "gaussian") << "' " " std: 1.0 " " } " " } " @@ -121,7 +135,20 @@ class GradientBasedSolverTest : public MultiDeviceTest { } Caffe::set_random_seed(this->seed_); this->InitSolverFromProtoString(proto.str()); - this->solver_->Solve(); + if (run.devices == 1) { + this->solver_->Solve(); + } else { + LOG(INFO) << "Multi-GPU test on " << run.devices << " devices"; + vector gpus; + for (int i = 0; i < run.devices; ++i) { + gpus.push_back(i); + } + Caffe::set_solver_count(gpus.size()); + this->sync_.reset(new P2PSync( + this->solver_, NULL, this->solver_->param())); + this->sync_->run(gpus); + Caffe::set_solver_count(1); + } } // Compute an update value given the current state of the train net, @@ -129,9 +156,9 @@ class GradientBasedSolverTest : public MultiDeviceTest { // updated_params will store the updated weight and bias results, // using the blobs' diffs to hold the update values themselves. void ComputeLeastSquaresUpdate(const Dtype learning_rate, - const Dtype weight_decay, const Dtype momentum, + const Dtype weight_decay, const Dtype momentum, const int num, vector > >* updated_params) { - const int N = num_; + const int N = num; const int D = channels_ * height_ * width_; // Run a forward pass, and manually compute the update values from the @@ -281,8 +308,9 @@ class GradientBasedSolverTest : public MultiDeviceTest { const double kPrecision = 1e-2; const double kMinPrecision = 1e-7; // Solve without accumulation and save parameters. - this->RunLeastSquaresSolver(kLearningRate, kWeightDecay, kMomentum, - kNumIters); + Run run1; + run1.num_iters = kNumIters; + this->RunLeastSquaresSolver(kLearningRate, kWeightDecay, kMomentum, run1); // Save parameters for comparison. Net& net = *this->solver_->net(); const vector > >& param_blobs = @@ -293,8 +321,11 @@ class GradientBasedSolverTest : public MultiDeviceTest { noaccum_params[i]->CopyFrom(*param_blobs[i], false, true); } // Solve by equivalent accumulation of gradients over divided batches. - this->RunLeastSquaresSolver(kLearningRate, kWeightDecay, kMomentum, - kNumIters, kIterSize); + Run run2; + run2.num = num_ / kIterSize; + run2.num_iters = kNumIters; + run2.iter_size = kIterSize; + this->RunLeastSquaresSolver(kLearningRate, kWeightDecay, kMomentum, run2); Net& net_accum = *this->solver_->net(); const vector > >& accum_params = net_accum.layer_by_name("innerprod")->blobs(); @@ -333,20 +364,37 @@ class GradientBasedSolverTest : public MultiDeviceTest { void TestLeastSquaresUpdate(const Dtype learning_rate = 1.0, const Dtype weight_decay = 0.0, const Dtype momentum = 0.0, const int iter_to_check = 0) { - // Initialize the solver and run K (= iter_to_check) solver iterations. - RunLeastSquaresSolver(learning_rate, weight_decay, momentum, iter_to_check); - - // Compute the (K+1)th update using the analytic least squares gradient. - vector > > updated_params; - ComputeLeastSquaresUpdate(learning_rate, weight_decay, momentum, - &updated_params); - - // Reinitialize the solver and run K+1 solver iterations. - RunLeastSquaresSolver(learning_rate, weight_decay, momentum, - iter_to_check + 1); - - // Check that the solver's solution matches ours. - CheckLeastSquaresUpdate(updated_params); + // Loop for each possible set of devices + int available_devices = 1; +#ifndef CPU_ONLY + if (Caffe::mode() == Caffe::GPU) { + CUDA_CHECK(cudaGetDeviceCount(&available_devices)); + } +#endif + for (int devices = 1; devices <= available_devices; ++devices) { + // Initialize the solver and run K (= iter_to_check) solver iterations. + Run ref; + // Run on one device, but increase batch to get equivalent run + ref.num = num_ * devices; + ref.num_iters = iter_to_check; + ref.const_data = devices > 1; + RunLeastSquaresSolver(learning_rate, weight_decay, momentum, ref); + + // Compute the (K+1)th update using the analytic least squares gradient. + vector > > updated_params; + ComputeLeastSquaresUpdate(learning_rate, weight_decay, momentum, ref.num, + &updated_params); + + // Reinitialize the solver and run K+1 solver iterations. + Run run; + run.num_iters = iter_to_check + 1; + run.devices = devices; + run.const_data = devices > 1; + RunLeastSquaresSolver(learning_rate, weight_decay, momentum, run); + + // Check that the solver's solution matches ours. + CheckLeastSquaresUpdate(updated_params); + } } }; diff --git a/tools/caffe.cpp b/tools/caffe.cpp index 3a23802add5..1e646c31d93 100644 --- a/tools/caffe.cpp +++ b/tools/caffe.cpp @@ -166,7 +166,8 @@ int train() { } if (gpus.size() > 1) { - caffe::P2PSync::run(solver, gpus); + caffe::P2PSync sync(solver, NULL, solver->param()); + sync.run(gpus); } else { LOG(INFO) << "Starting Optimization"; solver->Solve();