-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
164 lines (131 loc) · 6.39 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import configparser
from datetime import datetime
import os
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf, col
from pyspark.sql.functions import year, month, dayofmonth, hour, weekofyear, dayofweek, date_format, monotonically_increasing_id
config = configparser.ConfigParser()
config.read('dl.cfg')
os.environ['AWS_ACCESS_KEY_ID']=config['AWS']['AWS_ACCESS_KEY_ID']
os.environ['AWS_SECRET_ACCESS_KEY']=config['AWS']['AWS_SECRET_ACCESS_KEY']
def create_spark_session():
print('Creating spark session...')
spark = SparkSession \
.builder \
.config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \
.getOrCreate()
return spark
def process_song_data(spark, input_data, output_data):
"""
Process Song Data method
- Read Song Data files from input_data S3 bucket
- Extract Data and writes data into:
- songs_table
- artists_table
- Stores results as parquet file to output_data S3 bucket
"""
print('Running process song data...')
# get filepath to song data file
song_data = os.path.join(input_data, 'song_data/A/A/A/*.json')
print(' - Reading Song Data file...')
# read song data file
df = spark.read.json(song_data)
print(' - Writing songs_table output to S3...')
# extract columns to create songs table
songs_table = df.select('song_id', 'title', 'artist_id', 'year', 'duration').dropDuplicates()
# write songs table to parquet files partitioned by year and artist
songs_table.write.partitionBy('year', 'artist_id').parquet(os.path.join(output_data, "songs/songs.parquet"), 'overwrite')
# extract columns to create artists table
artists_table = df.select(
df.artist_id,
col('artist_name').alias('name'),
col('artist_location').alias('location'),
col('artist_latitude').alias('latitude'),
col('artist_longitude').alias('longitude')
).dropDuplicates()
print(' - Writing artists_table output to S3...')
# write artists table to parquet files
artists_table.write.parquet(os.path.join(output_data, "artists/artists.parquet"), 'overwrite')
def process_log_data(spark, input_data, output_data):
"""
Process Log Data method
- Read Log and Song Data files from input_data S3 bucket
- Extract Data and writes data into:
- users_table
- time_table
- songplays_table
- Stores results as parquet file to output_data S3 bucket
"""
print('Running process log data...')
# get filepath to log data file
log_data = os.path.join(input_data, 'log_data/2018/*/*.json')
print(' - Reading Log Data file...')
# read log data file
df = spark.read.json(log_data)
# filter by actions for song plays
df = df.filter(df.page == 'NextSong')
# extract columns for users table
users_table = df.select('userId', 'firstName', 'lastName', 'gender', 'level') \
.dropDuplicates() \
.withColumnRenamed('userId', 'user_id') \
.withColumnRenamed('firstName', 'first_name') \
.withColumnRenamed('lastName', 'last_name')
print(' - Writing users_table output to S3...')
# write users table to parquet files
users_table.write.parquet(os.path.join(output_data, 'users/users.parquet'), 'overwrite')
# create timestamp column from original timestamp column
get_timestamp = udf(lambda x: str(int(int(x)/1000)))
df = df.withColumn('timestamp', get_timestamp(df.ts))
# create datetime column from original timestamp column
get_datetime = udf(lambda x: str(datetime.fromtimestamp(int(x) / 1000.0)))
df = df.withColumn('datetime', get_datetime(df.ts))
# extract columns to create time table
time_table = df.select('datetime') \
.withColumn('start_time', col('datetime')) \
.withColumn('hour', hour('datetime')) \
.withColumn('day', dayofmonth('datetime')) \
.withColumn('week', weekofyear('datetime')) \
.withColumn('month', month('datetime')) \
.withColumn('year', year('datetime')) \
.withColumn('weekday', dayofweek('datetime')) \
.dropDuplicates()
print(' - Writing time_table parquet output to S3...')
# write time table to parquet files partitioned by year and month
time_table.write.partitionBy("year", "month").parquet(os.path.join(output_data, "time/time.parquet"), 'overwrite')
# read in song data to use for songplays table
song_df = spark.read.json(os.path.join(input_data, "song_data/A/A/A/*.json"))
# extract columns from joined song and log datasets to create songplays table
songplays_table = df.join(song_df, (df.song == song_df.title) & (df.artist == song_df.artist_name) & (df.length == song_df.duration), 'left_outer') \
.select(
col("timestamp").alias("start_time"),
col("userId").alias("user_id"),
df.level,
song_df.song_id,
song_df.artist_id,
col("sessionId").alias("session_id"),
df.location,
col("userAgent").alias("user_agent"),
year('datetime').alias('year'),
month('datetime').alias('month')
).withColumn("songplay_id", monotonically_increasing_id())
print(' - Writing songplays_table parquet to output_data S3...')
# write songplays table to parquet files partitioned by year and month
songplays_table.write.partitionBy('year', 'month').parquet(os.path.join(output_data, "songplays/songplays.parquet"), 'overwrite')
def main():
"""
Execution Rundown:
1) Create/Get Spark Session
2) Load and process Song Data from input S3 bucket
3) Write parquet files to output S3 bucket
4) Process Log and Song Data from input S3 bucket
5) Write parquet files to output S3 bucket
"""
print('Starting ETL.py...')
spark = create_spark_session()
input_data = "s3a://udacity-dend/"
output_data = "s3a://yonglun-udacity-datalake/"
process_song_data(spark, input_data, output_data)
process_log_data(spark, input_data, output_data)
print('End of ETL.py...')
if __name__ == "__main__":
main()