-
Notifications
You must be signed in to change notification settings - Fork 0
/
stylekqc.py
231 lines (206 loc) · 7.77 KB
/
stylekqc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# coding=utf-8
# Extra tasks and data loaders for stylekqc
# Copyright 2020 Sangwhan Moon. All rights reserved.
#
# Original license:
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
from __future__ import absolute_import, division, print_function
import csv
import os
import textwrap
import numpy as np
import six
import datasets
_GLUE_CITATION = """\
@inproceedings{wang2019glue,
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
note={In the Proceedings of ICLR.},
year={2019}
}
"""
_GLUE_DESCRIPTION = """\
GLUE, the General Language Understanding Evaluation benchmark
(https://gluebenchmark.com/) is a collection of resources for training,
evaluating, and analyzing natural language understanding systems.
"""
class StyleKQCConfig(datasets.BuilderConfig):
"""BuilderConfig for StyleKQC."""
def __init__(
self,
text_features,
label_column,
data_url,
data_dir,
citation,
url,
label_classes=None,
process_label=lambda x: x,
**kwargs,
):
"""BuilderConfig for StyleKQC.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column: `string`, name of the column in the tsv file corresponding
to the label
data_url: `string`, url to download the zip file from
data_dir: `string`, the path to the folder containing the tsv files in the
downloaded zip
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
process_label: `Function[string, any]`, function taking in the raw value
of the label and processing it to the form required by the label feature
**kwargs: keyword arguments forwarded to super.
"""
super(StyleKQCConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.text_features = text_features
self.label_column = label_column
self.label_classes = label_classes
self.data_url = data_url
self.data_dir = data_dir
self.citation = citation
self.url = url
self.process_label = process_label
class StyleKQC(datasets.GeneratorBasedBuilder):
"""The StyleKQC dataset."""
BUILDER_CONFIGS = [
StyleKQCConfig(
name="act",
description=textwrap.dedent(
""""""
),
text_features={"sentence": "sentence"},
label_classes=["0", "1", "2", "3"],
label_column="act",
data_url="",
data_dir="act",
citation=textwrap.dedent(
""""""
),
url="",
),
StyleKQCConfig(
name="topic",
description=textwrap.dedent(
""""""
),
text_features={"sentence": "sentence"},
label_classes=["0", "1", "2", "3", "4", "5"],
label_column="topic",
data_url="",
data_dir="topic",
citation=textwrap.dedent(
""""""
),
url="",
),
StyleKQCConfig(
name="sts",
description=textwrap.dedent(
""""""
),
text_features={
"sentence1": "sentence1",
"sentence2": "sentence2",
},
label_classes=["dissimilar", "similar"],
label_column="similarity",
data_url=None,
data_dir="sts",
citation=textwrap.dedent(
""""""
),
url="",
process_label=np.float32,
),
]
def _info(self):
features = {text_feature: datasets.Value("string") for text_feature in six.iterkeys(self.config.text_features)}
if self.config.label_classes:
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
else:
features["label"] = datasets.Value("float32")
features["idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=_GLUE_DESCRIPTION,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + _GLUE_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.name == "ax":
data_file = dl_manager.download(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": data_file,
"split": "test",
},
)
]
data_dir = self.config.data_dir
train_split = datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "train.tsv"),
"split": "train"
},
)
return [
train_split,
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "dev.tsv"),
"split": "dev"
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "test.tsv"),
"split": "test"
},
),
]
def _generate_examples(self, data_file, split, mrpc_files=None):
process_label = self.config.process_label
label_classes = self.config.label_classes
with open(data_file, encoding="utf8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for n, row in enumerate(reader):
example = {feat: row[col] for feat, col in six.iteritems(self.config.text_features)}
example["idx"] = n
if self.config.label_column in row:
label = row[self.config.label_column]
# For some tasks, the label is represented as 0 and 1 in the tsv
# files and needs to be cast to integer to work with the feature.
if label_classes and label not in label_classes:
label = int(label) if label else None
example["label"] = process_label(label)
else:
example["label"] = process_label(-1)
# Filter out corrupted rows.
for value in six.itervalues(example):
if value is None:
break
else:
yield example["idx"], example