-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
317 lines (275 loc) · 12.5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# -*- coding: utf-8 -*-
"""
/*******************************************
** This is a file created by ct
** Name: demo
** Date: 1/21/18
** BSD license
********************************************/
"""
import os
import sys
import argparse
import numpy as np
from datetime import datetime
from sklearn import metrics
import matplotlib.pyplot as plt
import torch
from torch import nn
from torch import optim
from torch.utils.data import DataLoader
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler
sys.path.append('../')
from dataloader.milano import load_data
from models.DenseNet import DenseNet
from dataloader.datasetSW import MilanSlidingWindowDataset
torch.manual_seed(22)
parse = argparse.ArgumentParser()
parse.add_argument('-height', type=int, default=20)
parse.add_argument('-width', type=int, default=20)
parse.add_argument('-traffic', type=str, default='sms')
# parse.add_argument('-close_size', type=int, default=3)
# parse.add_argument('-period_size', type=int, default=3)
# parse.add_argument('-trend_size', type=int, default=0)
parse.add_argument('-input_len', type=int, default=12)
parse.add_argument('-gis_num', type=int, default=47)
parse.add_argument('-window_size', type=int, default=10)
parse.add_argument('-test_size', type=int, default=24 * 7)
parse.add_argument('-nb_flow', type=int, default=1)
parse.add_argument('-crop', dest='crop', action='store_true')
parse.add_argument('-no-crop', dest='crop', action='store_false')
parse.set_defaults(crop=False)
parse.add_argument('-train', dest='train', action='store_true')
parse.add_argument('-no-train', dest='train', action='store_false')
parse.set_defaults(train=True)
parse.add_argument('-rows', nargs='+', type=int, default=[5, 15])
parse.add_argument('-cols', nargs='+', type=int, default=[5, 15])
parse.add_argument('-loss', type=str, default='l2', help='l1 | l2')
parse.add_argument('-lr', type=float, default=0.001)
parse.add_argument('-batch_size', type=int, default=32, help='batch size')
parse.add_argument('-epoch_size', type=int, default=100, help='epochs')
parse.add_argument('-drop_rate', type=float, default=0.2, help='drop out rate')
parse.add_argument('-test_row', type=int, default=5, help='test row')
parse.add_argument('-test_col', type=int, default=4, help='test col')
parse.add_argument('-save_dir', type=str, default='./results')
opt = parse.parse_args()
# print(opt)
# opt.save_dir = '{}/{}'.format(opt.save_dir, opt.traffic)
opt.model_filename = '{}/model={}-loss={}-lr={}-input_len={}'.format(opt.save_dir,
'densenet',
opt.loss, opt.lr, opt.input_len)
def log(fname, s):
# if not os.path.isdir(os.path.dirname(fname)):
# os.system("mkdir -p " + os.path.dirname(fname))
# fname = opt.save_dir + '/' + fname
f = open(fname, 'a')
f.write(str(datetime.now()) + ': ' + s + '\n')
f.close()
def set_lr(optimizer, epoch, n_epochs, lr):
lr = lr
if float(epoch) / n_epochs > 0.75:
lr = lr * 0.01
if float(epoch) / n_epochs > 0.5:
lr = lr * 0.1
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def train_epoch(data_type='train'):
total_loss = 0
if data_type == 'train':
model.train()
data = train_loader
if data_type == 'valid':
model.eval()
data = valid_loader
# if (opt.period_size > 0) & (opt.close_size > 0) & (opt.trend_size > 0):
# for idx, (c, p, t, target) in enumerate(data):
# optimizer.zero_grad()
# model.zero_grad()
# input_var = [Variable(_.float()).cuda() for _ in [c, p, t]]
# target_var = Variable(target.float(), requires_grad=False).cuda()
# pred = model(input_var)
# loss = criterion(pred, target_var)
# total_loss += loss.item()
# if data_type == 'train':
# loss.backward()
# optimizer.step()
if (opt.input_len > 0) & (opt.gis_num > 0):
for idx, (c, p, target) in enumerate(data):
optimizer.zero_grad()
model.zero_grad()
input_var = [Variable(_.float()).cuda() for _ in [c, p]]
target_var = Variable(target.float(), requires_grad=False).cuda()
pred = model(input_var)
loss = criterion(pred, target_var)
total_loss += loss.item()
if data_type == 'train':
loss.backward()
optimizer.step()
elif opt.input_len > 0:
for idx, (c, target) in enumerate(data):
optimizer.zero_grad()
model.zero_grad()
x = [Variable(c.float()).cuda()]
y = Variable(target.float(), requires_grad=False).cuda()
pred = model(x)
loss = criterion(pred, y)
total_loss += loss.item()
if data_type == 'train':
loss.backward()
optimizer.step()
return total_loss
def train():
# os.system("mkdir -p " + opt.save_dir)
best_valid_loss = 1.0
train_loss, valid_loss = [], []
early_stop_num = 10
early_stop = 0
for i in range(opt.epoch_size):
train_loss.append(train_epoch('train'))
valid_loss.append(train_epoch('valid'))
scheduler.step()
if valid_loss[-1] < best_valid_loss:
best_valid_loss = valid_loss[-1]
torch.save({'epoch': i, 'model': model, 'train_loss': train_loss,
'valid_loss': valid_loss}, opt.model_filename + '.model')
torch.save(optimizer, opt.model_filename + '.optim')
early_stop = 0
else:
early_stop += 1
log_string = ('iter: [{:d}/{:d}], train_loss: {:0.6f}, valid_loss: {:0.6f}, '
'best_valid_loss: {:0.6f}').format((i + 1), opt.epoch_size,
train_loss[-1],
valid_loss[-1],
best_valid_loss)
print(log_string)
log(opt.model_filename + '.log', log_string)
if early_stop >= early_stop_num:
print("Early stop...")
break
def predict(test_type='train'):
predictions = []
ground_truth = []
loss = []
best_model = torch.load(opt.model_filename + '.model').get('model')
if test_type == 'train':
data = train_loader
elif test_type == 'test':
data = test_loader
elif test_type == 'valid':
data = valid_loader
# if (opt.period_size > 0) & (opt.close_size > 0) & (opt.trend_size > 0):
# for idx, (c, p, t, target) in enumerate(data):
# input_var = [Variable(_.float()).cuda() for _ in [c, p, t]]
# target_var = Variable(target.float(), requires_grad=False).cuda()
# pred = best_model(input_var)
# predictions.append(pred.data.cpu().numpy())
# ground_truth.append(target.numpy())
# loss.append(criterion(pred, target_var).item())
if (opt.input_len > 0) & (opt.gis_num > 0):
for idx, (c, p, target) in enumerate(data):
input_var = [Variable(_.float()).cuda() for _ in [c, p]]
target_var = Variable(target.float(), requires_grad=False).cuda()
pred = best_model(input_var)
predictions.append(pred.data.cpu().numpy())
ground_truth.append(target.numpy())
loss.append(criterion(pred, target_var).item())
elif opt.input_len > 0:
for idx, (c, target) in enumerate(data):
input_var = Variable(c.float()).cuda()
target_var = Variable(target.float(), requires_grad=False).cuda()
pred = best_model(input_var)
predictions.append(pred.data.cpu().numpy())
ground_truth.append(target.numpy())
loss.append(criterion(pred, target_var).item())
final_predict = np.concatenate(predictions)
ground_truth = np.concatenate(ground_truth)
rmse = []
for y_hat, y in zip(final_predict, ground_truth):
flows, height, width = y_hat.shape
y_hat = np.reshape(y_hat, (flows, height * width)) * (mmn.max - mmn.min)
y = np.reshape(y, (flows, height * width)) * (mmn.max - mmn.min)
rmse.append(metrics.mean_squared_error(y_hat, y) ** 0.5)
print(test_type + ' RMSE:{:0.5f}'.format(np.mean(rmse)))
# print(len(model['train_loss']))
if opt.test_row & opt.test_col:
row, col = opt.test_row, opt.test_col
else:
row_length, col_length = ground_truth.shape[-2:]
row, col = int(row_length / 2), int(col_length / 2)
plt.figure()
plt.plot(final_predict[0::100, 0, row, col] * (mmn.max - mmn.min), 'r-', label='Predicted')
plt.plot(ground_truth[0::100, 0, row, col] * (mmn.max - mmn.min), 'k-', label='GroundTruth')
plt.legend(loc='upper right')
plt.savefig('./results/predictions.png')
# plt.show()
def train_valid_split(dataloader, val_size=0.2, shuffle=True, random_seed=0):
length = len(dataloader)
indices = list(range(0, length))
if shuffle:
np.random.seed(random_seed)
np.random.shuffle(indices)
if type(val_size) is float:
split = int(np.floor(val_size * length))
elif type(val_size) is int:
split = val_size
else:
raise ValueError('%s should be an int or float'.format(str))
return indices[split:], indices[:split]
if __name__ == '__main__':
# path = './data/all_data_sliced.h5'
path = './data/data_git_version.h5'
gisdir = '/home/chenym/STDenseNet/data/feat_tif'
traindataset = MilanSlidingWindowDataset(path, gisdir, opt.traffic, opt.test_size, opt.crop,
opt.rows, opt.cols, mode='train', window_size=opt.window_size, input_len=opt.input_len)
mmn = traindataset.mmn
testdataset = MilanSlidingWindowDataset(path, gisdir, opt.traffic, opt.test_size, opt.crop,
opt.rows, opt.cols, mode='test', window_size=opt.window_size, input_len=opt.input_len)
# x_train, y_train, x_test, y_test, mmn = load_data(path, opt.traffic, opt.close_size, opt.period_size,
# opt.trend_size,
# opt.test_size, opt.nb_flow, opt.height, opt.width, opt.crop,
# opt.rows, opt.cols)
# x_train.append(y_train)
# x_test.append(y_test)
# train_data = list(zip(*x_train))
# test_data = list(zip(*x_test))
# print(len(train_data), len(test_data))
# split the training data into train and validation
train_idx, valid_idx = train_valid_split(traindataset, 0.1, shuffle=True)
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
train_loader = DataLoader(traindataset, batch_size=opt.batch_size, sampler=train_sampler, pin_memory=True)
valid_loader = DataLoader(traindataset, batch_size=opt.batch_size, sampler=valid_sampler, pin_memory=True)
test_loader = DataLoader(testdataset, batch_size=opt.batch_size, shuffle=False)
# get data channels
channels = [opt.input_len * opt.nb_flow,
opt.gis_num * opt.nb_flow]
model = DenseNet(nb_flows=opt.nb_flow, drop_rate=opt.drop_rate, channels=channels).cuda()
optimizer = optim.Adam(model.parameters(), opt.lr)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[int(0.5 * opt.epoch_size),
int(0.75 * opt.epoch_size)], gamma=0.1)
# optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=0.9)
# print(model)
if not os.path.exists(opt.save_dir):
os.makedirs(opt.save_dir)
if not os.path.isdir(opt.save_dir):
raise Exception('%s is not a dir' % opt.save_dir)
if opt.loss == 'l1':
criterion = nn.L1Loss().cuda()
elif opt.loss == 'l2':
criterion = nn.MSELoss().cuda()
# print('Training...')
# log(opt.model_filename + '.log', '[training]')
# if opt.train:
# train()
model = torch.load(opt.model_filename + '.optim')
predict('test')
# plt.figure()
# plt.plot(torch.load(opt.model_filename + '.model').get('train_loss')[1:-1], 'r-')
# plt.legend(labels=['train_loss'], loc='best')
# plt.savefig('./results/train_loss.png')
# plt.figure()
# plt.plot(torch.load(opt.model_filename + '.model').get('valid_loss')[:-1], 'k-')
# plt.legend(labels=['test_loss'], loc='best')
# plt.savefig('./results/test_loss.png')