Skip to content

Latest commit

 

History

History
88 lines (80 loc) · 4.83 KB

README.md

File metadata and controls

88 lines (80 loc) · 4.83 KB

Distributed-Memory Generalized Tensor Completion Algorithms

This repository contains tensor completion algorithms alternating minimization, coordinate minimization, stochastic gradient descent, and quasi-Newton algorithm for least squares loss and Poisson loss implemented using the Python interface to Cyclops.

Dependencies

Usage of these codes requires installation of the Cyclops library and its python extension. The code currently uses this version.

Execution

To benchmark and test the codes run combined_test.py, which maybe used as follows.

python ./combined_test.py --help
usage: combined_test.py [-h] [--I int] [--J int] [--K int] [--R int]
                        [--num-iter-ALS-implicit int]
                        [--num-iter-ALS-explicit int] [--num-iter-CCD int]
                        [--num-iter-SGD int] [--time-limit float]
                        [--obj-freq-CCD int] [--obj-freq-SGD int]
                        [--err-thresh float] [--sp-fraction float]
                        [--use-sparse-rep int] [--block-size-ALS-implicit int]
                        [--block-size-ALS-explicit int]
                        [--regularization-ALS float]
                        [--regularization-CCD float]
                        [--regularization-SGD float] [--learning-rate float]
                        [--sample-frac-SGD float] [--function-tensor int]
                        [--use-CCD-TTTP int] [--tensor-file str]

optional arguments:
  -h, --help            show this help message and exit
  --I int               Input tensor size in first dimension (default: 64)
  --J int               Input tensor size in second dimension (default: 64)
  --K int               Input tensor size in third dimension (default: 64)
  --R int               Input CP decomposition rank (default: 10)
  --num-iter-ALS-implicit int
                        Number of iterations (sweeps) to run ALS with implicit
                        CG (default: 10)
  --num-iter-ALS-explicit int
                        Number of iterations (sweeps) to run ALS with explicit
                        CG (default: 10)
  --num-iter-CCD int    Number of iterations (updates to each column of each
                        matrix) for which to run CCD (default: 10)
  --num-iter-SGD int    Number of iteration, each iteration computes
                        subgradients from --sample-frac-SGD of the total
                        number of nonzeros in tensor (default: 10)
  --time-limit float    Number of seconds after which to terminate tests for
                        either ALS, SGD, or CCD if number of iterations is not
                        exceeded (default: 30)
  --obj-freq-CCD int    Number of iterations after which to calculate
                        objective (time for objective calculation not included
                        in time limit) for CCD (default: 1)
  --obj-freq-SGD int    Number of iterations after which to calculate
                        objective (time for objective calculation not included
                        in time limit) for SGD (default: 1)
  --err-thresh float    Residual norm threshold at which to halt if number of
                        iterations does not expire (default 1.E-5)
  --sp-fraction float   sparsity (default: .1)
  --use-sparse-rep int  whether to store tensor as sparse (default: 1, i.e.
                        True)
  --block-size-ALS-implicit int
                        block-size for implicit ALS (default: 0, meaning to
                        use a single block)
  --block-size-ALS-explicit int
                        block-size for explicit ALS (default: 0, meaning to
                        use a single block)
  --regularization-ALS float
                        regularization for ALS (default: 0.00001)
  --regularization-CCD float
                        regularization for CCD (default: 0.00001)
  --regularization-SGD float
                        regularization for SGD (default: 0.00001)
  --learning-rate float
                        learning rate for SGD (default: 0.01)
  --sample-frac-SGD float
                        sample size as fraction of total number of nonzeros
                        for SGD (default: 0.01)
  --function-tensor int
                        whether to use function tensor as test problem
                        (default: 0, i.e. False, use explicit low CP-rank
                        sampled tensor)
  --use-CCD-TTTP int    whether to use TTTP for CCD contractions (default: 1,
                        i.e. Yes)
  --tensor-file str     Filename from which to read tensor (default: None, use
                        model problem)

To execute with MPI (for example with 4 processes), use mpirun -np 4 python ./combined_test.py ....

Some scripts to obtain and preprocess various test datasets are provided in the data/ directory.