forked from AnonymousWu/Tensor_completion
-
Notifications
You must be signed in to change notification settings - Fork 2
/
arg_defs.py
150 lines (145 loc) · 4.84 KB
/
arg_defs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def add_general_arguments(parser):
parser.add_argument(
'--I',
type=int,
default=64,
metavar='int',
help='Input tensor size in first dimension (default: 64)')
parser.add_argument(
'--J',
type=int,
default=64,
metavar='int',
help='Input tensor size in second dimension (default: 64)')
parser.add_argument(
'--K',
type=int,
default=64,
metavar='int',
help='Input tensor size in third dimension (default: 64)')
parser.add_argument(
'--R',
type=int,
default=10,
metavar='int',
help='Input CP decomposition rank (default: 10)')
parser.add_argument(
'--num-iter-ALS-implicit',
type=int,
default=100,
metavar='int',
help='Number of iterations (sweeps) to run ALS with implicit CG (default: 10)')
parser.add_argument(
'--num-iter-ALS-explicit',
type=int,
default=100,
metavar='int',
help='Number of iterations (sweeps) to run ALS with explicit CG (default: 10)')
parser.add_argument(
'--num-iter-CCD',
type=int,
default=100,
metavar='int',
help='Number of iterations (updates to each column of each matrix) for which to run CCD (default: 10)')
parser.add_argument(
'--num-iter-SGD',
type=int,
default=1000,
metavar='int',
help='Number of iteration, each iteration computes subgradients from --sample-frac-SGD of the total number of nonzeros in tensor (default: 10)')
parser.add_argument(
'--time-limit',
type=float,
default=30,
metavar='float',
help='Number of seconds after which to terminate tests for either ALS, SGD, or CCD if number of iterations is not exceeded (default: 30)')
parser.add_argument(
'--obj-freq-CCD',
type=int,
default=1,
metavar='int',
help='Number of iterations after which to calculate objective (time for objective calculation not included in time limit) for CCD (default: 1)')
parser.add_argument(
'--obj-freq-SGD',
type=int,
default=1,
metavar='int',
help='Number of iterations after which to calculate objective (time for objective calculation not included in time limit) for SGD (default: 1)')
parser.add_argument(
'--err-thresh',
type=float,
default=1.E-5,
metavar='float',
help='Residual norm threshold at which to halt if number of iterations does not expire (default 1.E-5)')
parser.add_argument(
'--sp-fraction',
type=float,
default=.1,
metavar='float',
help='sparsity (default: .1)')
parser.add_argument(
'--use-sparse-rep',
type=int,
default=1,
metavar='int',
help='whether to store tensor as sparse (default: 1, i.e. True)')
parser.add_argument(
'--block-size-ALS-implicit',
type=int,
default=0,
metavar='int',
help='block-size for implicit ALS (default: 0, meaning to use a single block)')
parser.add_argument(
'--block-size-ALS-explicit',
type=int,
default=0,
metavar='int',
help='block-size for explicit ALS (default: 0, meaning to use a single block)')
parser.add_argument(
'--regularization-ALS',
type=float,
default=0.00001,
metavar='float',
help='regularization for ALS (default: 0.00001)')
parser.add_argument(
'--regularization-CCD',
type=float,
default=0.00001,
metavar='float',
help='regularization for CCD (default: 0.00001)')
parser.add_argument(
'--regularization-SGD',
type=float,
default=0.00001,
metavar='float',
help='regularization for SGD (default: 0.00001)')
parser.add_argument(
'--learning-rate',
type=float,
default=0.01,
metavar='float',
help='learning rate for SGD (default: 0.01)')
parser.add_argument(
'--sample-frac-SGD',
type=float,
default=0.1,
metavar='float',
help='sample size as fraction of total number of nonzeros for SGD (default: 0.01)')
parser.add_argument(
'--function-tensor',
type=int,
default=0,
metavar='int',
help='whether to use function tensor as test problem (default: 0, i.e. False, use explicit low CP-rank sampled tensor)')
parser.add_argument(
'--use-MTTKRP',
type=int,
default=1,
metavar='int',
help='whether to use special MTTKRP kernel (default: 1, i.e. Yes)')
parser.add_argument(
'--tensor-file',
type=str,
default='',
metavar='str',
help='Filename from which to read tensor (default: None, use model problem)')