-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathFloydWarshall.cc
221 lines (169 loc) · 3.3 KB
/
FloydWarshall.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*
* FloydWarshall.cc
*
* Implementation of Floyd Warshall Algorithm
*
* Uses C++11 standard
*
* See README for details
*
* by:
* Ananth Murthy
* Chandan Yeshwanth
*
* on:
* 14th April 2014
*
* */
# include <iostream>
# include <fstream>
# include <string>
using namespace::std;
// class to handle comparisions and additions of infinite weighted quantities, used to store distances
class Distance
{
private:
int weight;
bool infinite;
public:
Distance()
{
weight = 0;
infinite = true;
}
void setWeight(int weight)
{
this->weight = weight;
infinite = false;
}
string getWeight() const
{
if(infinite)
return "inf";
return to_string(weight);
}
bool isInfinite()
{
return infinite;
}
bool isZero()
{
if(!infinite && weight==0)
return true;
return false;
}
// comparing infinite weights
bool operator > (const Distance & e)
{
if (e.infinite)
return false;
else if (this->infinite)
return true;
else if (this->weight > e.weight)
return true;
return false;
}
// adding infinite weights
Distance operator + (const Distance & e)
{
Distance d;
if(this->infinite || e.infinite)
{
return d;
}
d.setWeight(e.weight + this->weight);
return d;
}
};
// To store shortest path distances
Distance ** dist ;
// To store the path and corresponding parents
int ** parent ;
// Recursive function to obtain the path as a string
string obtainPath(int i, int j)
{
if (dist[i][j].isInfinite())
return " no path to ";
if (parent[i][j] == i)
return " ";
else
return obtainPath(i, parent[i][j]) + to_string(parent[i][j]+1) + obtainPath(parent[i][j], j);
}
int main(int argc, char** argv)
{
if(argc < 2)
{
cout << "Check README for usage." << endl;
exit(-1);
}
ifstream ifile (argv[1]);
if(!ifile)
{
cout << "File not found." << endl;
exit(-1);
}
// number of vertices and edges
int V, E;
int i, j, k, u, v, w;
ifile >> V >> E;
// Matrices declared and initialised to infinity and zero respectively
dist = new Distance * [V];
for (int i = 0; i < V; i++)
dist[i] = new Distance[V];
parent = new int *[V];
for (int i = 0; i < V; i++)
parent[i] = new int[V];
// Read edges from input file
for (i=0; i<E; i++)
{
ifile >> u >> v >> w;
dist[u-1][v-1].setWeight(w);
parent[u-1][v-1] = u-1;
}
ifile.close();
// Path from vertex to itself is set
for (i=0; i<V; i++)
{
dist[i][i].setWeight(0);
parent[i][i] = i;
}
// Actual Floyd Warshall Algorithm
for (k=0; k<V; k++)
{
for (i=0; i<V; i++)
{
for (j=0; j<V; j++)
{
if (dist[i][j] > dist[i][k] + dist[k][j])
{
dist[i][j] = dist[i][k] + dist[k][j];
parent[i][j] = parent[k][j];
}
}
}
}
// Check for negative cycles
for (i=0; i<V; i++)
{
if (!dist[i][i].isZero())
{
cout << "Negative cycle at : " << i+1 << endl;
return 0;
}
}
// Print all paths
cout << "All Pairs Shortest Paths : \n\n";
for (i=0; i<V; i++)
{
cout << endl;
for (j=0; j<V; j++)
{
cout << "From : " << i+1 << " To : " << j+1 << endl;
cout << "Path : " << 1+i << obtainPath(i,j) << j+1 << endl;
cout << "Distance : " << dist[i][j].getWeight() << endl << endl;
}
}
delete [] dist;
delete [] parent;
return 0;
}