-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
244 lines (209 loc) · 10.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import os
import shutil
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, DistributedSampler
import datasets
import util.misc as utils
from datasets import build_dataset
from engine import evaluate, train_one_epoch
from models import build_model
def get_args_parser():
parser = argparse.ArgumentParser('Set Point Query Transformer', add_help=False)
# training Parameters
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=1500, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# model parameters
# - backbone
parser.add_argument('--backbone', default='vgg16_bn', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned', 'fourier'),
help="Type of positional embedding to use on top of the image features")
# - transformer
parser.add_argument('--dec_layers', default=2, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=512, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.0, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
# loss parameters
# - matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_point', default=0.05, type=float,
help="SmoothL1 point coefficient in the matching cost")
# - loss coefficients
parser.add_argument('--ce_loss_coef', default=1.0, type=float)
parser.add_argument('--point_loss_coef', default=5.0, type=float)
parser.add_argument('--eos_coef', default=0.5, type=float,
help="Relative classification weight of the no-object class")
# dataset parameters
parser.add_argument('--dataset_file', default="SHA")
parser.add_argument('--data_path', default="./data/ShanghaiTech/PartA", type=str)
# misc parameters
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=2, type=int)
parser.add_argument('--eval_freq', default=5, type=int)
parser.add_argument('--syn_bn', default=0, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# build model
model, criterion = build_model(args)
model.to(device)
if args.syn_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
# build optimizer
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.epochs)
# build dataset
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, 1, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
# output directory and log
if utils.is_main_process:
output_dir = os.path.join("./outputs", args.dataset_file, args.output_dir)
os.makedirs(output_dir, exist_ok=True)
output_dir = Path(output_dir)
run_log_name = os.path.join(output_dir, 'run_log.txt')
with open(run_log_name, "a") as log_file:
log_file.write('Run Log %s\n' % time.strftime("%c"))
log_file.write("{}".format(args))
log_file.write("parameters: {}".format(n_parameters))
# resume
best_mae, best_epoch = 1e8, 0
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
best_mae = checkpoint['best_mae']
best_epoch = checkpoint['best_epoch']
# training
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
t1 = time.time()
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch,
args.clip_max_norm)
t2 = time.time()
print('[ep %d][lr %.7f][%.2fs]' % \
(epoch, optimizer.param_groups[0]['lr'], t2 - t1))
if utils.is_main_process:
with open(run_log_name, "a") as log_file:
log_file.write('\n[ep %d][lr %.7f][%.2fs]' % (epoch, optimizer.param_groups[0]['lr'], t2 - t1))
lr_scheduler.step()
# save checkpoint
checkpoint_paths = [output_dir / 'checkpoint.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
'best_mae': best_mae,
}, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
# write log
if utils.is_main_process():
with open(run_log_name, "a") as f:
f.write(json.dumps(log_stats) + "\n")
# evaluation
if epoch % args.eval_freq == 0 and epoch > 0:
t1 = time.time()
test_stats = evaluate(model, data_loader_val, device, epoch, None)
t2 = time.time()
# output results
mae, mse = test_stats['mae'], test_stats['mse']
if mae < best_mae:
best_epoch = epoch
best_mae = mae
print("\n==========================")
print("\nepoch:", epoch, "mae:", mae, "mse:", mse, "\n\nbest mae:", best_mae, "best epoch:", best_epoch)
print("==========================\n")
if utils.is_main_process():
with open(run_log_name, "a") as log_file:
log_file.write("\nepoch:{}, mae:{}, mse:{}, time{}, \n\nbest mae:{}, best epoch: {}\n\n".format(
epoch, mae, mse, t2 - t1, best_mae, best_epoch))
# save best checkpoint
if mae == best_mae and utils.is_main_process():
src_path = output_dir / 'checkpoint.pth'
dst_path = output_dir / 'best_checkpoint.pth'
shutil.copyfile(src_path, dst_path)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('PET training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)