diff --git a/experiments/utils.py b/experiments/utils.py index fe5b2c4..e4650c2 100644 --- a/experiments/utils.py +++ b/experiments/utils.py @@ -47,8 +47,6 @@ def matching_sector2(cols): num_one_counts = np.sum([1 for x in counts if x == 1]) - print(counts) - return 1 - num_one_counts / len(cols) @@ -71,10 +69,8 @@ def matching_sector(stat_arb): sectors[sector] = 1 counts = list(sectors.values()) - # print("\n", counts) num_one_counts = np.sum([1 for x in counts if x == 1]) - # print(1 - num_one_counts / len(asset_names)) return 1 - num_one_counts / len(asset_names) @@ -223,7 +219,7 @@ def simulate(res, portfolio, trading_cost_model, lev_fraction): if bust_time is not None: zeros = 0 * stocks_temp.loc[bust_time:].iloc[1:] stocks_temp = pd.concat([stocks_temp.loc[:bust_time], zeros], axis=0) - print(f"\nPortfolio went bust at {bust_time}") + print(f"\nPortfolio exited early at {bust_time}") print(f"bust_sort: {bust_sort}") return EquityPortfolio( @@ -484,14 +480,7 @@ def plot_stat_arb( ) print("stat-arb: ", stocks_str) - # print("mu: ", mu) - print("profit: ", stat_arb_tuple.metrics.total_profit) - - # plot straight green line at mu - print("exit trigger: ", exit_trigger) - - # plt.legend(bbox_to_anchor=(0.5, 1.2), loc='upper center', ncol=2) plt.gcf().autofmt_xdate() xlim_start = prices_train.index[21] @@ -617,13 +606,6 @@ def plot_stat_arb( .mean() ) - # m_train = stat_arb.metrics( - # prices_train, - # mu.loc[prices_train.index], - # T_max=np.inf, - # ) - # m_test = stat_arb.metrics(prices_test, mu.loc[prices_test.index], T_max=500) - else: stat_arb.metrics(prices_train, stat_arb.mu, T_max=np.inf) stat_arb.metrics(prices_test, stat_arb.mu, T_max=63) @@ -652,21 +634,11 @@ def plot_stat_arb( ) * short_rate profit -= short_cost - print("fsdfdds", prices_train.index[-1]) - print("fsdfdds", prices_test.index[0]) profits_train = profit.loc[: prices_train.index[-1]] profits_test = profit.loc[prices_test.index[0] :] profits_test.loc[exit_date:] = 0 - print("fdaadadsad", profits_test.sum()) - - #### TESTING - - # profits_train = m_train.daily_profit.loc[xlim_start:] - # profits_test = m_test.daily_profit - - print(2111, profits_test.sum()) if exit_trigger is not None: prices_train.index[-1] - pd.Timedelta(days=(exit_trigger - entry_date).days) @@ -675,7 +647,6 @@ def plot_stat_arb( plt.plot(profits_train.loc[xlim_start:].cumsum(), color="b", label="In-sample") - # plt.plot(metrics.daily_profit.cumsum(), color="r", label="Out-of-sample") plt.plot(profits_test.cumsum(), color="r", label="Out-of-sample")