-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_step3.py
284 lines (238 loc) · 11 KB
/
run_step3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import sys
import time
import logging
import argparse
import numpy as np
import torch
import torch.optim as optim
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
### from Detectron2 ###
import utils.comm as comm
from configs.defaults import _C
from utils.engine import launch
from utils.checkpointer import Checkpointer
from utils.sem_seg_evaluation import SemSegEvaluator
from utils.distributed_sampler import seed_all_rng
### from MiB/PLOP ###
from datasets import *
import utils.tasks as tasks
from models.deeplabv3 import DeepLabV3
from models.losses import get_losses
logger = logging.getLogger("Step 3")
def do_test(cfg, model, logger, checkpointer, testset, test_loader, CLASSES):
evaluator = SemSegEvaluator(len(CLASSES), distributed=True)
evaluator.reset()
with torch.no_grad():
model.eval()
for batch in test_loader:
img = torch.stack([x[0] for x in batch], dim=0).to(torch.device("cuda"))
gt = torch.stack([x[1] for x in batch], dim=0).numpy()
logits = model(img)
pred = logits.argmax(dim=1).to(torch.device("cpu")).numpy()
evaluator.process(pred, gt)
results = evaluator.evaluate()
if comm.is_main_process():
logger.info("# of Test Samples: {}".format(results["Total samples"]))
logger.info("{:>21}\t{:>}".format("<MA>", "<IoU>"))
prev_ma , curr_ma = [], []
prev_iou, curr_iou = [], []
base_classes = tasks.get_tasks(cfg.dataset, cfg.TASK, 0)
num_base_cls = len(base_classes)
target_cat_list = testset.target_transform.tolist()
for ind, (ma, iou) in enumerate(zip(results["per Acc"], results["per IoU"])):
if ind in target_cat_list:
cat_ind = target_cat_list.index(ind)
cls_info = f"{ind:2d}-{CLASSES[cat_ind]:.11}"
logger.info(f"{cls_info:<14}: {ma:05.2f}\t{iou:05.2f}")
if cat_ind in base_classes:
prev_ma += [ma]
prev_iou += [iou]
else:
curr_ma += [ma]
curr_iou += [iou]
prev_ma = np.nanmean(prev_ma) if len(prev_ma) else np.nan
curr_ma = np.nanmean(curr_ma) if len(curr_ma) else np.nan
prev_iou = np.nanmean(results["per IoU"][:num_base_cls])
curr_iou = np.nanmean(results["per IoU"][num_base_cls:])
hIoU = 2*prev_iou*curr_iou/(prev_iou+curr_iou)
#PA = results["pACC"]
#mMA = results["mACC"]
mIoU = results["mIoU"]
#logger.info(f"PA: {PA:.2f} mMA: {mMA:.2f}")
logger.info(f" prev-MA: {prev_ma:.2f} curr-MA: {curr_ma:.2f}")
logger.info(f"prev-IoU: {prev_iou:.2f} curr-IoU: {curr_iou:.2f} mIoU: {mIoU:.2f} hIoU: {hIoU:.2f}")
if results is None: results = {}
return results
def do_train(cfg, model, model_old=None):
logger.info(model)
trainset, testset, train_loader, test_loader, CLASSES = get_datasets(cfg)
iters_per_epoch = len(trainset) // (cfg.DATA.BATCH_SIZE * cfg.num_gpus)
max_iter = iters_per_epoch * cfg.SOLVER.MAX_EPOCH
lr_lambda = lambda it: (1-it/max_iter)**cfg.SOLVER.GAMMA
optimizer = optim.SGD(
get_params(model),
lr=cfg.SOLVER.LR, momentum=cfg.SOLVER.MOMENTUM,
nesterov=cfg.SOLVER.NESTEROV, weight_decay=cfg.SOLVER.WEIGHT_DECAY
)
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda)
criterion_CE, criterion_MEM = get_losses(cfg, use_mem=True)
logger.info("<Feature Memory>")
logger.info(f"Loading MEMORY from {cfg.mem_name}")
MEM = torch.load(f"./checkpoints/{cfg.mem_name}", map_location="cpu") # (num_oldcls, num_mem, dims)
logger.info(f"Memory Size: {MEM.shape} (num_oldcls, num_mem, num_dim)")
num_oldcls, num_mem = MEM.shape[:-1]
MEM = MEM.reshape(num_oldcls*num_mem,-1,1,1).to(torch.device("cuda")) # (num_oldcls*num_mem, dims, 1, 1)
MEM_GT = torch.tensor(range(num_oldcls), dtype=torch.long)
MEM_GT = MEM_GT.unsqueeze(1).expand(num_oldcls, num_mem)
MEM_GT = MEM_GT.reshape(-1,1,1).to(torch.device("cuda"))
if model_old is not None:
logger.info("<Previous model>")
checkpointer_old = Checkpointer(model_old, "Step 3")
checkpointer_old.load(cfg.PREV_WEIGHTS)
model_old.eval()
logger.info("<Current model>")
checkpointer = Checkpointer(model, "Step 3")
checkpointer.load(cfg.MODEL.WEIGHTS, bool(cfg.STEP==0))
if cfg.MODEL.MIB_CLS_INIT:
if isinstance(model, DDP):
model.module._init_like_MiB()
else:
model._init_like_MiB()
logger.info("Trainset Size: {}".format(len(trainset)))
logger.info("Target transform (Train) : {}".format(trainset.target_transform.tolist()))
logger.info("Target transform (Test) : {}".format(testset.target_transform.tolist()))
logger.info(f"START {cfg.save_name} -->")
model.train()
ep = 1
interval_eval = cfg.SOLVER.MAX_EPOCH
interval_verbose = iters_per_epoch // 10
storages = {"Total": 0, "CE": 0, "ALI": 0, "CE (mem)": 0}
for it, batch in zip(range(1, max_iter+1), train_loader):
img = torch.stack([x[0] for x in batch], dim=0).to(torch.device("cuda"))
gt = torch.stack([x[1] for x in batch], dim=0).to(torch.device("cuda"))
logits, logits_mem = model(img, memory=MEM)
loss_dict = {}
if cfg.STEP > 0:
with torch.no_grad():
logits_old = model_old(img)
prob_old = torch.softmax(logits_old, dim=1) # (bs, C_old, H, W)
pred_old = logits_old.argmax(dim=1)
bg_region = gt==0
gt_comb = torch.clone(gt)
gt_comb[bg_region] = pred_old[bg_region]
ali = torch.logsumexp(logits, dim=1) - torch.sum(prob_old * logits[:,:logits_old.shape[1]], dim=1) # (bs, H, W)
loss_dict["loss_ali"] = cfg.LOSS.MY.WEIGHT * ali[bg_region].mean()
loss_dict["loss_ce"] = criterion_CE(logits, gt_comb).mean()
loss_dict["loss_ce_mem"] = cfg.LOSS.MEMORY.WEIGHT * criterion_MEM(logits_mem, MEM_GT)
losses = sum(loss_dict.values())
loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()}
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
optimizer.zero_grad()
losses.backward()
optimizer.step()
scheduler.step()
storages["Total"] += losses_reduced
storages["CE"] += loss_dict_reduced["loss_ce"]
storages["CE (mem)"] += loss_dict_reduced["loss_ce_mem"]
if model_old is not None:
storages["ALI"] += loss_dict_reduced["loss_ali"]
if it % interval_verbose == 0:
verbose = f"{it:5d}/{max_iter+1:5d} CE: {loss_dict_reduced['loss_ce']:.4f} "
if cfg.STEP > 0:
verbose += f"ALI: {loss_dict_reduced['loss_ali']:.4f} CE (mem): {loss_dict_reduced['loss_ce_mem']:.4f}"
logger.info(verbose)
if it % iters_per_epoch == 0:
for k in storages.keys(): storages[k] /= it
logger.info(
"epoch: {:3d} Total: {:.4f} CE: {:.4f} ALI: {:.4f} CE (mem): {:.4f} lr: {}".format(
ep, storages["Total"], storages["CE"], storages["ALI"], storages["CE (mem)"], optimizer.param_groups[0]["lr"]
)
)
for k in storages.keys(): storages[k] = 0
if ep % interval_eval == 0:
scores = do_test(cfg, model, logger, checkpointer, testset, test_loader, CLASSES)
model.train()
comm.synchronize()
logger.info("\n")
ep += 1
checkpointer.save(cfg.save_name+"_last", scores)
logger.info(f"END {cfg.save_name} -->")
def main(args):
start_time = time.time()
cfg = _C.clone()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.num_gpus = args.num_gpus
cfg.dataset = args.config_file.split("/")[1]
if cfg.STEP == 1:
cfg.PREV_WEIGHTS = f"Base_{cfg.SEED}_"
else: # STEP > 1
cfg.PREV_WEIGHTS = f"ALIFE-M-S3_{cfg.SEED}_"
if cfg.OVERLAP:
cfg.PREV_WEIGHTS += "ov_"
else:
cfg.PREV_WEIGHTS += "dis_"
cfg.PREV_WEIGHTS += f"{cfg.TASK}_{cfg.STEP-1}_last.pt"
cfg.mem_name = f"ROT_{cfg.SEED}_"
if cfg.OVERLAP:
cfg.mem_name += "ov_"
else:
cfg.mem_name += "dis_"
num_classes = tasks.get_per_task_classes(cfg.dataset, cfg.TASK, cfg.STEP)
num_cls = sum(num_classes[:cfg.STEP])
cfg.mem_name += f"{cfg.TASK}_{cfg.STEP}_last_C{num_cls}M{args.mem_size}.pt"
save_name = f"{cfg.TAG}_{cfg.SEED}_"
if cfg.OVERLAP:
save_name += "ov_"
else:
save_name += "dis_"
save_name += f"{cfg.TASK}_{cfg.STEP}"
cfg.save_name = save_name
cfg.freeze()
logger.setLevel(logging.DEBUG)
logger.propagate = False
if comm.is_main_process():
formatter = logging.Formatter("[%(asctime)s] %(name)s %(levelname)s: %(message)s", datefmt="%m/%d %H:%M:%S")
ch = logging.StreamHandler(stream=sys.stdout)
ch.setLevel(logging.DEBUG)
ch.setFormatter(formatter)
logger.addHandler(ch)
fh = logging.FileHandler(f"./logs/{cfg.save_name}.txt")
fh.setLevel(logging.DEBUG)
fh.setFormatter(formatter)
logger.addHandler(fh)
logger.info(" ".join(["\n{}: {}".format(k, v) for k,v in cfg.items()]))
# make sure each worker has a different, yet deterministic seed if specified
seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + comm.get_rank())
num_classes = tasks.get_per_task_classes(cfg.dataset, cfg.TASK, cfg.STEP)
model = DeepLabV3(num_classes, cfg.MODEL.SYNC_BN, freeze_type=cfg.MODEL.FREEZE_TYPE).to(torch.device("cuda"))
model_old = None
if cfg.STEP > 0:
model_old = DeepLabV3(num_classes[:-1], cfg.MODEL.SYNC_BN, freeze_type="all").to(torch.device("cuda"))
model_old.eval()
if args.num_gpus > 1:
model = DDP(model, device_ids=[comm.get_local_rank()], broadcast_buffers=False, find_unused_parameters=False)
do_train(cfg, model, model_old)
tt = time.time() - start_time
hours = int(tt // 3600)
mins = int((tt % 3600) // 60)
logger.info(f"ELAPSED TIME: {hours:02d}(h) {mins:02d}(m)")
def get_params(model):
params = []
for name, module in model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if value.requires_grad:
logger.info(f"Learning {name}-{module_param_name}")
params.append({"params": [value]})
return params
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config-file")
parser.add_argument("--mem-size", type=int, help="size of memory")
parser.add_argument("--num-gpus", type=int, default=2, help="number of gpus")
parser.add_argument("--opts", help="Modify config options using the command-line 'KEY VALUE' pairs", default=[], nargs=argparse.REMAINDER)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
launch(main, args.num_gpus, args=(args,))