-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimple_ibr.py
265 lines (219 loc) · 10.7 KB
/
simple_ibr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
""" simple image-based rendering """
#--------------------------args-------------------------------------#
from helpers.help import logger
from omegaconf import DictConfig, OmegaConf
import hydra
@hydra.main(version_base=None, config_path="config", config_name="ours")
def get_config(cfg: DictConfig):
OmegaConf.set_struct(cfg, False)
global args
args = cfg
get_config()
#------------------------------------------------------------------#
from PIL import Image
from pathlib import Path
import os
import numpy as np
import cv2
import copy
import torch
import torch.nn.functional as F
from scipy.special import softmax
from volsdf.datasets.scene_dataset import get_trains_ids, get_eval_ids
from datasets.data_io import read_pfm
from helpers.utils import read_camera_parameters, read_img, check_geometric_consistency
def lift(x, y, z, intrinsics):
fx = intrinsics[:, 0, 0]
fy = intrinsics[:, 1, 1]
cx = intrinsics[:, 0, 2]
cy = intrinsics[:, 1, 2]
sk = intrinsics[:, 0, 1]
x_lift = (x - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z
y_lift = (y - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z
# homogeneous
return torch.stack((x_lift, y_lift, z, torch.ones_like(z)), dim=-1)
def get_camera_params(uv, pose, intrinsics):
"""
uv: (B, N, 2)
pose, intrinsics: (B, 4, 4)
"""
uv = torch.from_numpy(uv[None, :, :]).float()
pose = torch.from_numpy(pose[None, :, :]).float()
intrinsics = torch.from_numpy(intrinsics[None, :, :]).float()
if pose.shape[1] == 7:
raise NotImplementedError
else: # In case of pose matrix representation
cam_loc = pose[:, :3, 3]
p = pose
batch_size, num_samples, _ = uv.shape
depth = torch.ones((batch_size, num_samples))
x_cam = uv[:, :, 0].view(batch_size, -1) # (B, N)
y_cam = uv[:, :, 1].view(batch_size, -1) # (B, N)
z_cam = depth.view(batch_size, -1) # (B, N)
pixel_points_cam = lift(x_cam, y_cam, z_cam, intrinsics=intrinsics) # (B, N, 4)
# permute for batch matrix product
pixel_points_cam = pixel_points_cam.permute(0, 2, 1) # (B, 4, N)
# world_coords = (p[:, :3, :3] @ pixel_points_cam[:, :3, :] + p[:, :3, 3:]).permute(0, 2, 1) # (B, N, 3)
world_coords = (torch.bmm(p[:, :3, :3], pixel_points_cam[:, :3, :]) + p[:, :3, 3:]).permute(0, 2, 1) # (B, N, 3)
# assert torch.abs(world_coords - torch.bmm(p, pixel_points_cam).permute(0, 2, 1)[:, :, :3]).mean() < 0.0004
ray_dirs = world_coords - cam_loc[:, None, :]
ray_dirs = F.normalize(ray_dirs, dim=2)
return ray_dirs, cam_loc
def get_dir_loc(_intrinsics, extrinsics, hw):
h, w = hw[0], hw[1]
intrinsics = np.eye(4)
intrinsics[:3, :3] = _intrinsics
pose = np.linalg.inv(extrinsics)
uv = np.mgrid[0:h, 0:w].astype(np.int32)
uv = np.flip(uv, axis=0).copy() # (2, 576, 768)
uv = uv.reshape(2, -1).transpose(1, 0) # (442368, 2)
ray_dirs, cam_loc = get_camera_params(uv, pose, intrinsics)
ray_dirs, cam_loc = ray_dirs.squeeze(), cam_loc.squeeze() # (442368, 3) # (3)
ray_dirs = ray_dirs.reshape(h, w, 3)
return ray_dirs.numpy(), cam_loc.numpy()
def get_lpIMG(img_A, num_levels=4, is_mask=False):
# generate Gaussian pyramid for A,B and mask
G = img_A.copy().astype("float")
gpA = [G]
for i in range(num_levels):
G = cv2.pyrDown(G)
gpA.append(G)
# generate Laplacian Pyramids for A,B and masks
if is_mask:
lpA = [gpA[num_levels-1]]
for i in range(num_levels-2,-1,-1):
GE = gpA[i]
lpA.append(GE)
else:
lpA = [gpA[num_levels-1]]
for i in range(num_levels-1,0,-1):
GE = cv2.pyrUp(gpA[i])
L = cv2.subtract(gpA[i-1],GE)
lpA.append(L)
return lpA
def Laplacian_Blending(imgs, masks, num_levels=4):
# Implement Laplacian_blending
# assume mask is float32 [0,1], it has the same size to img_A and img_B
# the mask indicates which parts of img_A or img_B are blended together
# num_levels is the number of levels in the pyramid
assert imgs.shape == masks.shape
lp_imgs = []
for img_i in imgs:
lp_img_i = get_lpIMG(img_i, num_levels=num_levels)
lp_imgs.append(lp_img_i)
lp_masks = []
for mask_i in masks:
lp_mask_i = get_lpIMG(mask_i, num_levels=num_levels, is_mask=True)
lp_masks.append(lp_mask_i)
# Now blend images according to mask in each level
LS = []
for i in range(num_levels):
ls = 0
for j in range(len(masks)):
ls += lp_masks[j][i] * lp_imgs[j][i]
LS.append(ls)
# now reconstruct
ls_ = LS[0]
for i in range(1,num_levels):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_, LS[i])
return np.clip(ls_, 0.0, 1.0)
def image_based_render(scan_folder, out_folder):
trains_i = get_trains_ids(args.vol.dataset.data_dir, Path(scan_folder).name, args.num_view)
evals_i = get_eval_ids(args.vol.dataset.data_dir, int(Path(scan_folder).name[4:]))
logger.debug(f'trains_i {trains_i}')
logger.debug(f'evals_i {evals_i}')
pair_data = [(idx, trains_i) for idx in evals_i]
# for each reference view and the corresponding source views
for ref_view, src_views in pair_data:
# load the camera parameters
ref_intrinsics, ref_extrinsics = read_camera_parameters(
os.path.join(scan_folder, 'cams/{:0>8}_cam.txt'.format(ref_view)))
# load the estimated depth of the reference view
pred_ref_img = read_img(os.path.join(out_folder, 'eval_{:0>3}.png'.format(ref_view)))
ref_depth_est = read_pfm(os.path.join(out_folder, 'depth_est/{:0>8}.pfm'.format(ref_view)))[0]
ref_dir, ref_loc = get_dir_loc(ref_intrinsics, ref_extrinsics, ref_depth_est.shape)
all_srcview_depth_ests = []
all_srcview_x = []
all_srcview_y = []
all_srcview_geomask = []
weight_mask_sum = 0
weight_masks = []
sampled_img_srcs = []
# 0. compute the geometric mask
for src_view in src_views:
# camera parameters of the source view
src_intrinsics, src_extrinsics = read_camera_parameters(
os.path.join(scan_folder, 'cams/{:0>8}_cam.txt'.format(src_view)))
# the estimated depth of the source view
src_img = read_img(os.path.join(scan_folder, 'images/{:0>8}.png'.format(src_view)))
src_depth_est = read_pfm(os.path.join(out_folder, 'depth_est/{:0>8}.pfm'.format(src_view)))[0]
assert src_depth_est.shape == ref_depth_est.shape
geo_mask, depth_reprojected, x2d_src, y2d_src = check_geometric_consistency(ref_depth_est, ref_intrinsics, ref_extrinsics,
src_depth_est,
src_intrinsics, src_extrinsics,
filter_dist=2,
)
# x2d_src, y2d_src (576, 768) src_img (576, 768, 3)
sampled_img_src = cv2.remap(src_img, x2d_src, y2d_src, interpolation=cv2.INTER_CUBIC)
sampled_img_srcs.append(sampled_img_src)
# per point direction
src_dir, src_loc = get_dir_loc(src_intrinsics, src_extrinsics, src_depth_est.shape)
sampled_src_dir = cv2.remap(src_dir, x2d_src, y2d_src, interpolation=cv2.INTER_CUBIC)
sampled_src_dir /= np.linalg.norm(sampled_src_dir, axis=2, keepdims=True) # nan will be replaced by 0 later
cos_dir = (sampled_src_dir*ref_dir).sum(axis=2) # -1 .. 1
weight_mask = cos_dir
weight_mask = np.nan_to_num(weight_mask)
weight_mask *= geo_mask.astype(np.int32)
weight_masks.append(weight_mask)
weight_mask_sum += weight_mask
all_srcview_depth_ests.append(depth_reprojected)
all_srcview_x.append(x2d_src)
all_srcview_y.append(y2d_src)
all_srcview_geomask.append(geo_mask)
weight_mask = 0.2 * np.ones_like(ref_depth_est)
weight_masks.append(weight_mask)
sampled_img_srcs.append(pred_ref_img)
weight_masks = np.stack(weight_masks)
weight_masks = softmax(20 * weight_masks, axis=0)
weight_masks = weight_masks[..., None].repeat(3, -1) # (N, H, W) -> (N, H, W, 3)
sampled_img_srcs = np.stack(sampled_img_srcs)
# 1. fill undefined pixels
sampled_img_srcs_4lap = sampled_img_srcs * weight_masks + sampled_img_srcs[-1:] * (1-weight_masks)
# 2. erode mask, so that when bluring, undefined pixels won't come in
weight_masks_4lap = copy.deepcopy(weight_masks)
kernel = np.ones((5, 5), np.uint8)
for i in range(weight_masks_4lap.shape[0]-1):
erode_mask = cv2.erode((weight_masks_4lap[i]>0.2)*1.0, kernel) * 1.0
weight_masks_4lap[i] = erode_mask * weight_masks_4lap[i]
weight_masks_4lap[-1] += 1e-2
weight_masks_4lap /= weight_masks_4lap.sum(0, keepdims=True)
# 3. laplacian blend
blend_image = Laplacian_Blending(sampled_img_srcs_4lap, weight_masks_4lap, num_levels=4)
Image.fromarray((blend_image * 255).astype(np.uint8)).save(
os.path.join(out_folder, 'eval_blend_{:0>3}.png'.format(ref_view))
)
if __name__ == '__main__':
# python simple_ibr.py testlist='config/lists/dtu.txt' outdir=exps_ibr +evals_folder=exps_result
# python simple_ibr.py vol=bmvs testlist='config/lists/bmvs.txt' outdir=exps_ibr +evals_folder=exps_result
if 'txt' in args.testlist:
with open(args.testlist) as f:
content = f.readlines()
testlist = [line.rstrip() for line in content] # ["scan1", "scan2"]
else:
testlist = [x for x in args.testlist.replace(' ', '').split(',') if x] # ["scan1",]
scan_ids = [int(x[4:]) for x in testlist]
logger.warning(scan_ids)
for scan_id in scan_ids:
# use the latest epoch's rendering results
evaldir = f'{args.evals_folder}/{args.vol.train.expname}_{scan_id}' # exps_result/ours_106
epoch = 0
for renderdir in os.listdir(evaldir):
if renderdir.startswith('rendering_'):
epoch = max(epoch, int(renderdir.replace('rendering_', '')))
out_folder = os.path.join(evaldir, f'rendering_{epoch}') # exps_result/ours_106/rendering_1562
scan_folder = os.path.join(args.outdir, f'scan{scan_id}') # data_ibr/scan106
assert os.path.exists(scan_folder) and os.path.exists(out_folder)
logger.warning(f'use cam & src_imgs in {scan_folder}')
logger.warning(f' add new images to {out_folder}')
image_based_render(scan_folder, out_folder)