-
Notifications
You must be signed in to change notification settings - Fork 8
/
saliency_metrics.py
262 lines (200 loc) · 7.4 KB
/
saliency_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np
import matplotlib.pyplot as plt
import random
import sys
import cv2
import math
def generate_dummy(size=14,num_fixations=100,num_salience_points=200):
# first generate dummy gt and salience map
discrete_gt = np.zeros((size,size))
s_map = np.zeros((size,size))
for i in range(0,num_fixations):
discrete_gt[np.random.randint(size),np.random.randint(size)] = 1.0
for i in range(0,num_salience_points):
s_map[np.random.randint(size),np.random.randint(size)] = 255*round(random.random(),1)
# check if gt and s_map are same size
assert discrete_gt.shape==s_map.shape, 'sizes of ground truth and salience map don\'t match'
return s_map,discrete_gt
def normalize_map(s_map):
# normalize the salience map (as done in MIT code)
norm_s_map = (s_map - np.min(s_map))/((np.max(s_map)-np.min(s_map))*1.0)
return norm_s_map
def discretize_gt(gt):
import warnings
warnings.warn('can improve the way GT is discretized')
return gt/255
def auc_judd(s_map,gt):
# ground truth is discrete, s_map is continous and normalized
if np.max(gt) == 255:
gt = discretize_gt(gt)
s_map = normalize_map(s_map)
# thresholds are calculated from the salience map, only at places where fixations are present
thresholds = []
for i in range(0,gt.shape[0]):
for k in range(0,gt.shape[1]):
if gt[i][k]>0:
thresholds.append(s_map[i][k])
num_fixations = np.sum(gt)
# num fixations is no. of salience map values at gt >0
thresholds = sorted(set(thresholds))
#fp_list = []
#tp_list = []
area = []
area.append((0.0,0.0))
for thresh in thresholds:
# in the salience map, keep only those pixels with values above threshold
temp = np.zeros(s_map.shape)
temp[s_map>=thresh] = 1.0
assert np.max(gt)==1, 'something is wrong with ground truth..not discretized properly max value > 1'
assert np.max(s_map)==1, 'something is wrong with salience map..not normalized properly max value > 1'
num_overlap = np.where(np.add(temp,gt)==2)[0].shape[0]
tp = num_overlap/(num_fixations*1.0)
# total number of pixels > threshold - number of pixels that overlap with gt / total number of non fixated pixels
# this becomes nan when gt is full of fixations..this won't happen
fp = (np.sum(temp) - num_overlap)/((np.shape(gt)[0] * np.shape(gt)[1]) - num_fixations)
area.append((round(tp,4),round(fp,4)))
#tp_list.append(tp)
#fp_list.append(fp)
#tp_list.reverse()
#fp_list.reverse()
area.append((1.0,1.0))
#tp_list.append(1.0)
#fp_list.append(1.0)
#print tp_list
area.sort(key = lambda x:x[0])
tp_list = [x[0] for x in area]
fp_list = [x[1] for x in area]
return np.trapz(np.array(tp_list),np.array(fp_list))
def auc_borji(s_map,gt,splits=100,stepsize=0.1):
gt = discretize_gt(gt)
num_fixations = np.sum(gt)
num_pixels = s_map.shape[0]*s_map.shape[1]
random_numbers = []
for i in range(0,splits):
temp_list = []
for k in range(0,num_fixations):
temp_list.append(np.random.randint(num_pixels))
random_numbers.append(temp_list)
aucs = []
# for each split, calculate auc
for i in random_numbers:
r_sal_map = []
for k in i:
r_sal_map.append(s_map[k%s_map.shape[0]-1, k/s_map.shape[0]])
# in these values, we need to find thresholds and calculate auc
thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
r_sal_map = np.array(r_sal_map)
# once threshs are got
thresholds = sorted(set(thresholds))
area = []
area.append((0.0,0.0))
for thresh in thresholds:
# in the salience map, keep only those pixels with values above threshold
temp = np.zeros(s_map.shape)
temp[s_map>=thresh] = 1.0
num_overlap = np.where(np.add(temp,gt)==2)[0].shape[0]
tp = num_overlap/(num_fixations*1.0)
#fp = (np.sum(temp) - num_overlap)/((np.shape(gt)[0] * np.shape(gt)[1]) - num_fixations)
# number of values in r_sal_map, above the threshold, divided by num of random locations = num of fixations
fp = len(np.where(r_sal_map>thresh)[0])/(num_fixations*1.0)
area.append((round(tp,4),round(fp,4)))
area.append((1.0,1.0))
area.sort(key = lambda x:x[0])
tp_list = [x[0] for x in area]
fp_list = [x[1] for x in area]
aucs.append(np.trapz(np.array(tp_list),np.array(fp_list)))
return np.mean(aucs)
def auc_shuff(s_map,gt,other_map,splits=100,stepsize=0.1):
gt = discretize_gt(gt)
other_map = discretize_gt(other_map)
num_fixations = np.sum(gt)
x,y = np.where(other_map==1)
other_map_fixs = []
for j in zip(x,y):
other_map_fixs.append(j[0]*other_map.shape[0] + j[1])
ind = len(other_map_fixs)
assert ind==np.sum(other_map), 'something is wrong in auc shuffle'
num_fixations_other = min(ind,num_fixations)
num_pixels = s_map.shape[0]*s_map.shape[1]
random_numbers = []
for i in range(0,splits):
temp_list = []
t1 = np.random.permutation(ind)
for k in t1:
temp_list.append(other_map_fixs[k])
random_numbers.append(temp_list)
aucs = []
# for each split, calculate auc
for i in random_numbers:
r_sal_map = []
for k in i:
r_sal_map.append(s_map[k%s_map.shape[0]-1, k/s_map.shape[0]])
# in these values, we need to find thresholds and calculate auc
thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
r_sal_map = np.array(r_sal_map)
# once threshs are got
thresholds = sorted(set(thresholds))
area = []
area.append((0.0,0.0))
for thresh in thresholds:
# in the salience map, keep only those pixels with values above threshold
temp = np.zeros(s_map.shape)
temp[s_map>=thresh] = 1.0
num_overlap = np.where(np.add(temp,gt)==2)[0].shape[0]
tp = num_overlap/(num_fixations*1.0)
#fp = (np.sum(temp) - num_overlap)/((np.shape(gt)[0] * np.shape(gt)[1]) - num_fixations)
# number of values in r_sal_map, above the threshold, divided by num of random locations = num of fixations
fp = len(np.where(r_sal_map>thresh)[0])/(num_fixations*1.0)
area.append((round(tp,4),round(fp,4)))
area.append((1.0,1.0))
area.sort(key = lambda x:x[0])
tp_list = [x[0] for x in area]
fp_list = [x[1] for x in area]
aucs.append(np.trapz(np.array(tp_list),np.array(fp_list)))
return np.mean(aucs)
def nss(s_map,gt,gt_is_image=True):
if np.max(gt) == 255:
gt = discretize_gt(gt)
#x,y = np.where(gt==1)
xy = np.where(gt==1)
s_map_norm = (s_map - np.mean(s_map))/np.std(s_map)
'''temp = []
for i in zip(x,y):
temp.append(s_map_norm[i[0],i[1]])'''
return np.mean(s_map_norm[xy])#np.mean(temp)#np.mean(s_map_norm*(gt==1).astype(int).astype(np.float32))
def infogain(s_map,gt,baseline_map):
gt = discretize_gt(gt)
# assuming s_map and baseline_map are normalized
eps = 2.2204e-16
s_map = s_map/(np.sum(s_map)*1.0)
baseline_map = baseline_map/(np.sum(baseline_map)*1.0)
# for all places where gt=1, calculate info gain
temp = []
x,y = np.where(gt==1)
for i in zip(x,y):
temp.append(np.log2(eps + s_map[i[0],i[1]]) - np.log2(eps + baseline_map[i[0],i[1]]))
return np.mean(temp)
def similarity(s_map,gt):
# here gt is not discretized nor normalized
s_map = normalize_map(s_map)
gt = normalize_map(gt)
s_map = s_map/(np.sum(s_map)*1.0)
gt = gt/(np.sum(gt)*1.0)
x,y = np.where(gt>0)
sim = 0.0
for i in zip(x,y):
sim = sim + min(gt[i[0],i[1]],s_map[i[0],i[1]])
return sim
def cc(s_map,gt):
s_map_norm = (s_map - np.mean(s_map))/np.std(s_map)
gt_norm = (gt - np.mean(gt))/np.std(gt)
a = s_map_norm
b = gt_norm
r = (a*b).sum() / math.sqrt((a*a).sum() * (b*b).sum());
#r = np.corrcoef(s_map_norm, gt_norm)
return r
def kldiv(s_map,gt):
s_map = s_map/(np.sum(s_map)*1.0)
gt = gt/(np.sum(gt)*1.0)
eps = 2.2204e-16
return np.sum(gt * np.log(eps + gt/(s_map + eps)))