-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathinfer.py
143 lines (118 loc) · 4.82 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#test end to end benchmark data test
import sys, os
import torch
import argparse
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import cv2
#import scipy.misc as m ## USE scipy (< v1.2.0) TO READ THE IMAGE TO PRODUCE THE RESULTS REPORTED IN THE PAPER
from torch.autograd import Variable
from torch.utils import data
from tqdm import tqdm
import matplotlib.pyplot as plt
from models import get_model
from loaders import get_loader
from utils import convert_state_dict
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def unwarp(img, bm):
w,h=img.shape[0],img.shape[1]
bm = bm.transpose(1, 2).transpose(2, 3).detach().cpu().numpy()[0,:,:,:]
bm0=cv2.blur(bm[:,:,0],(3,3))
bm1=cv2.blur(bm[:,:,1],(3,3))
bm0=cv2.resize(bm0,(h,w))
bm1=cv2.resize(bm1,(h,w))
bm=np.stack([bm0,bm1],axis=-1)
bm=np.expand_dims(bm,0)
bm=torch.from_numpy(bm).double()
img = img.astype(float) / 255.0
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, 0)
img = torch.from_numpy(img).double()
res = F.grid_sample(input=img, grid=bm)
res = res[0].numpy().transpose((1, 2, 0))
return res
def test(args,img_path,fname):
wc_model_file_name = os.path.split(args.wc_model_path)[1]
wc_model_name = wc_model_file_name[:wc_model_file_name.find('_')]
bm_model_file_name = os.path.split(args.bm_model_path)[1]
bm_model_name = bm_model_file_name[:bm_model_file_name.find('_')]
wc_n_classes = 3
bm_n_classes = 2
wc_img_size=(256,256)
bm_img_size=(128,128)
# Setup image
print("Read Input Image from : {}".format(img_path))
imgorg = cv2.imread(img_path)
imgorg = cv2.cvtColor(imgorg, cv2.COLOR_BGR2RGB)
img = cv2.resize(imgorg, wc_img_size)
'''
# Alternatively use scipy (< v1.2.0)
# TO PRODUCE THE RESULTS REPORTED IN THE PAPER
# Comment line 61-63 and uncomment 68-69
# For details refer to https://github.com/cvlab-stonybrook/DewarpNet/issues/38
imgorg = m.imread(img_path,mode='RGB')
img = m.imresize(imgorg, wc_loaderimg_size)
'''
img = img[:, :, ::-1]
img = img.astype(float) / 255.0
img = img.transpose(2, 0, 1) # NHWC -> NCHW
img = np.expand_dims(img, 0)
img = torch.from_numpy(img).float()
# Predict
htan = nn.Hardtanh(0,1.0)
wc_model = get_model(wc_model_name, wc_n_classes, in_channels=3)
if DEVICE.type == 'cpu':
wc_state = convert_state_dict(torch.load(args.wc_model_path, map_location='cpu')['model_state'])
else:
wc_state = convert_state_dict(torch.load(args.wc_model_path)['model_state'])
wc_model.load_state_dict(wc_state)
wc_model.eval()
bm_model = get_model(bm_model_name, bm_n_classes, in_channels=3)
if DEVICE.type == 'cpu':
bm_state = convert_state_dict(torch.load(args.bm_model_path, map_location='cpu')['model_state'])
else:
bm_state = convert_state_dict(torch.load(args.bm_model_path)['model_state'])
bm_model.load_state_dict(bm_state)
bm_model.eval()
if torch.cuda.is_available():
wc_model.cuda()
bm_model.cuda()
images = Variable(img.cuda())
else:
images = Variable(img)
with torch.no_grad():
wc_outputs = wc_model(images)
pred_wc = htan(wc_outputs)
bm_input=F.interpolate(pred_wc, bm_img_size)
outputs_bm = bm_model(bm_input)
# call unwarp
uwpred=unwarp(imgorg, outputs_bm)
if args.show:
f1, axarr1 = plt.subplots(1, 2)
axarr1[0].imshow(imgorg)
axarr1[1].imshow(uwpred)
plt.show()
# Save the output
outp=os.path.join(args.out_path,fname)
cv2.imwrite(outp,uwpred[:,:,::-1]*255)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Params')
parser.add_argument('--wc_model_path', nargs='?', type=str, default='',
help='Path to the saved wc model')
parser.add_argument('--bm_model_path', nargs='?', type=str, default='',
help='Path to the saved bm model')
parser.add_argument('--img_path', nargs='?', type=str, default='./eval/inp/',
help='Path of the input image')
parser.add_argument('--out_path', nargs='?', type=str, default='./eval/uw/',
help='Path of the output unwarped image')
parser.add_argument('--show', dest='show', action='store_true',
help='Show the input image and output unwarped')
parser.set_defaults(show=False)
args = parser.parse_args()
for fname in os.listdir(args.img_path):
if '.jpg' in fname or '.JPG' in fname or '.png' in fname:
img_path=os.path.join( args.img_path,fname)
test(args,img_path,fname)
# python infer.py --wc_model_path ./eval/models/unetnc_doc3d.pkl --bm_model_path ./eval/models/dnetccnl_doc3d.pkl --show