-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanalyse_unimatch_rank.py
202 lines (175 loc) · 11.2 KB
/
analyse_unimatch_rank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
###################analysing the rank of the predictions fo the labeled images
import argparse
import logging
import os
import pprint
import torch
from torch import nn
import torch.backends.cudnn as cudnn
from torch.optim import SGD
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import yaml
from dataset.semi import SemiDataset
from model.semseg.deeplabv3plus import DeepLabV3Plus
from supervised import evaluate
from util.classes import CLASSES
from util.ohem import ProbOhemCrossEntropy2d
from util.utils import count_params, init_log, AverageMeter
from util.dist_helper import setup_distributed
import pickle
import numpy as np
torch.set_printoptions(threshold=10000)
#PATH_SAVE = '/nfs/bigcortex.cs.stonybrook.edu/add_disk0/ironman/Unimatch_ranking'
#PATH_SAVE = '/nfs/bigcone.cs.stonybrook.edu/add_disk0/ironman/Unimatch_ranking'
#PATH_SAVE = '/nfs/bigrod.cs.stonybrook.edu/add_disk0/ironman/Unimatch_ranking'
PATH_SAVE='./labeled_images_correct_ranking'
parser = argparse.ArgumentParser(description='Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation')
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--labeled-id-path', type=str, required=True)
parser.add_argument('--unlabeled-id-path', type=str, required=True)
parser.add_argument('--save-path', type=str, required=True)
parser.add_argument('--local_rank', default=0, type=int)
parser.add_argument('--port', default=None, type=int)
def return_stats(class_top_k_indices, considered_class):
#print(class_top_k_indices.shape)##(36947, 2)
temp_dict={}
for _i_ in range(class_top_k_indices.shape[0]):
temp = class_top_k_indices[_i_,:]#(2,)
# if (considered_class == temp[0]):
temp = tuple(temp)
if(temp_dict.get(temp) is None):
temp_dict[temp]=1
temp_dict[temp]+=1
return temp_dict
def main():
########################################################################change top K
K_CONSIDER=[2,3,4,5,6,7,8,9,10,11,12]
CONFIDENCE = [[0.95,1],[0.90,0.95],[0.85,0.90],[0.8,0.85],[0.75,0.8],[0.7,0.75],[0.65,0.7],[0.6,0.65],[0.55,0.6],[0.5,0.55]]
NOT_CONSIDER=100#makes the noncosidered index and corresponding values
CLASS_0=50
args = parser.parse_args()
cfg = yaml.load(open(args.config, "r"), Loader=yaml.Loader)
rank, world_size = setup_distributed(port=args.port)
if rank == 0:
os.makedirs(args.save_path, exist_ok=True)
cudnn.enabled = True
cudnn.benchmark = True
model = DeepLabV3Plus(cfg)
optimizer = SGD([{'params': model.backbone.parameters(), 'lr': cfg['lr']},
{'params': [param for name, param in model.named_parameters() if 'backbone' not in name],
'lr': cfg['lr'] * cfg['lr_multi']}], lr=cfg['lr'], momentum=0.9, weight_decay=1e-4)
local_rank = int(os.environ["LOCAL_RANK"])
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], broadcast_buffers=False,
output_device=local_rank, find_unused_parameters=False)
#only for the labeled images
trainset_l = SemiDataset(cfg['dataset'], cfg['data_root'], 'train_l',
cfg['crop_size'], args.labeled_id_path)
#valset = SemiDataset(cfg['dataset'], cfg['data_root'], 'val')
trainsampler_l = torch.utils.data.distributed.DistributedSampler(trainset_l)
trainloader_l = DataLoader(trainset_l, batch_size=1,
pin_memory=True, num_workers=1, drop_last=True, sampler=trainsampler_l)#92
print(cfg['criterion']['kwargs'])
#criterion_l = torch.nn.CrossEntropyLoss(reduction='none',ignore_index=255).cuda(local_rank)
criterion_l=ProbOhemCrossEntropy2d(reduction='none',**cfg['criterion']['kwargs']).cuda(local_rank)
if not os.path.exists(PATH_SAVE):
os.makedirs(PATH_SAVE)
for epoch in range(0,80):
print("epoch ", str(epoch))
PATH_SAVE_FOLDER = PATH_SAVE+'/'+str(epoch)
if not os.path.exists(PATH_SAVE_FOLDER):
os.makedirs(PATH_SAVE_FOLDER)
print(os.path.join(args.save_path, str(epoch)+'_latest.pth'))
checkpoint = torch.load(os.path.join(args.save_path, str(epoch)+'_latest.pth'))
model.load_state_dict(checkpoint['model'])
model.cuda()
model.eval()
final_dict={}
for _k_ in K_CONSIDER:
final_dict[_k_]={}
for b_conf, e_conf in CONFIDENCE:
final_dict[_k_][tuple([b_conf, e_conf])]={}
final_dict[_k_][tuple([b_conf, e_conf])]['total']=0
for i, ((img_x, mask_x)) in enumerate(trainloader_l):
img_x, mask_x = img_x.cuda(), mask_x.cuda()#[1, 3, 321, 321], [1, 321, 321]
pred_x = model(img_x).detach()#[1, 21, 321, 321]
softmax_pred_x = pred_x.softmax(dim=1)#[1, 21, 321, 321]
softmax_pred_x = torch.squeeze(softmax_pred_x)#[21, 321, 321]
softmax_pred_x_top_k_values,softmax_pred_x_top_k_indices =torch.topk(softmax_pred_x,softmax_pred_x.shape[0],dim=0)#[21, 321, 321]) ([21, 321, 321]
pred_conf_x = pred_x.softmax(dim=1).max(dim=1)[0]#[1, 321, 321]
pred_mask_x = pred_x.argmax(dim=1)#[1, 321, 321]
loss_x = criterion_l(pred_x, mask_x)#torch.Size([1, 801, 801])
pred_mask_x[pred_mask_x==0]=CLASS_0
mask_x[mask_x==0]= CLASS_0
####################################################################################################################
#####considered pseydo labels based on confidence
considered_psseudo_labels = torch.zeros(pred_conf_x.shape).cuda()
considered_psseudo_labels[pred_conf_x<e_conf]=1
considered_psseudo_labels[pred_conf_x<b_conf]=0
########pseudo labels above threshold
pseudo_mask_x = considered_psseudo_labels*pred_mask_x #torch.Size([1, 801, 801])
#pseudo_mask_x = pred_mask_x.clone()#[1, 321, 321]
######################################################################################################################
correct_pseudo_labels = torch.zeros(pseudo_mask_x.shape).cuda()#[1, 321, 321]
correct_pseudo_labels[pseudo_mask_x==mask_x]=1
test_1 = correct_pseudo_labels*pred_conf_x
# print(torch.unique(test_1))
# print(torch.unique(correct_pseudo_labels.squeeze()*softmax_pred_x_top_k_values[0,:,:]))
# print(torch.min(torch.unique(test_1)))
# print(torch.min(torch.unique(correct_pseudo_labels.squeeze()*softmax_pred_x_top_k_values[0,:,:])))
GT_CLASSES= list(torch.unique(mask_x))
for considered_class in GT_CLASSES:
if(considered_class < 100):
class_correct_pseudo_labels = correct_pseudo_labels.clone()#[1, 321, 321]
class_correct_pseudo_labels[mask_x!=considered_class]=0
if(torch.sum(class_correct_pseudo_labels).item()>0):
if considered_class.item() not in final_dict[_k_][tuple([b_conf, e_conf])].keys():
final_dict[_k_][tuple([b_conf, e_conf])][considered_class.item()]={}
test_3 = class_correct_pseudo_labels.clone()#[1, 321, 321]
# print(considered_class)
# print(torch.unique(test_3))
# print(torch.sum(test_3))
# print(torch.unique(test_3.squeeze()*softmax_pred_x_top_k_indices[0,:,:]))
# aa = torch.zeros(softmax_pred_x_top_k_indices[0,:,:].shape)
# aa[ (test_3.squeeze()*softmax_pred_x_top_k_indices[0,:,:])==considered_class]=1
# print(torch.sum(aa))
# print(aaa)
class_top_k_indices= softmax_pred_x_top_k_indices.clone()
class_top_k_values = softmax_pred_x_top_k_values.clone()
class_top_k_indices=class_top_k_indices[0:_k_,:,:]#[2, 321, 321]
class_top_k_values = class_top_k_values[0:_k_,:,:]
test_3 = test_3.repeat(_k_,1,1)#[2, 321, 321]
class_top_k_indices[test_3==0]= NOT_CONSIDER
class_top_k_values[test_3==0]= NOT_CONSIDER
class_top_k_indices = class_top_k_indices.view(class_top_k_indices.shape[0],-1)#[2, 103041]
class_top_k_indices = class_top_k_indices.permute(1,0)
class_top_k_indices = class_top_k_indices.detach().cpu().numpy()
class_top_k_values = class_top_k_values.view(class_top_k_values.shape[0],-1)
class_top_k_values = class_top_k_values.permute(1,0)
class_top_k_values = class_top_k_values.detach().cpu().numpy()
rank_firstindex = class_top_k_indices[:,0]
locs = np.squeeze(np.argwhere(rank_firstindex==NOT_CONSIDER), axis=1)
class_top_k_indices = np.delete(class_top_k_indices, locs.tolist(), 0)
class_top_k_indices = np.int8(class_top_k_indices)
class_top_k_values = np.delete(class_top_k_values, locs.tolist(), 0)
local_stats = return_stats(class_top_k_indices, considered_class)
for _key_ in local_stats.keys():
if(final_dict[_k_][tuple([b_conf, e_conf])][considered_class.item()].get(_key_) is None):
final_dict[_k_][tuple([b_conf, e_conf])][considered_class.item()][_key_]=0
final_dict[_k_][tuple([b_conf, e_conf])][considered_class.item()][_key_]+=local_stats[_key_]
final_dict[_k_][tuple([b_conf, e_conf])]['total']+=local_stats[_key_]
with open(PATH_SAVE_FOLDER+'/final_dict.txt', 'w') as f:
for _k_ in final_dict.keys():
f.write('#####CONSIDER K'+' : '+str(_k_)+'\n')
for s_prob, e_prob in final_dict[_k_].keys():
f.write('!!!!!!CONSIDER PROB'+' : '+str(s_prob)+' - '+str(e_prob)+'\n')
for _class_ in final_dict[_k_][(s_prob,e_prob)].keys():
if(_class_ != 'total'):
f.write('-----CONSIDER CLASS'+' : '+str(_class_)+'\n')
x = sorted(final_dict[_k_][(s_prob,e_prob)][_class_].items(), key=lambda x:x[1], reverse=True)
for line in x:
f.write(str(line[0])+' : '+str(line[1])+'\n')
if __name__ == '__main__':
main()