-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathloss.py
executable file
·289 lines (239 loc) · 12.5 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os
import numpy as np
import torch
from torch import nn
from boxlist import cat_boxlist, boxlist_iou
import math
INF = 100000000
class SigmoidFocalLoss(nn.Module):
def __init__(self, gamma, alpha):
super().__init__()
self.gamma = gamma
self.alpha = alpha
self.eps = 1e-6
def forward(self, out, target):
n_class = out.shape[1]
class_ids = torch.arange(
1, n_class + 1, dtype=target.dtype, device=target.device
).unsqueeze(0)
t = target.unsqueeze(1)
p = torch.sigmoid(out)
p = torch.clamp(p, self.eps, 1-self.eps) # for numerical stability
gamma = self.gamma
alpha = self.alpha
term1 = (1 - p) ** gamma * torch.log(p)
term2 = p ** gamma * torch.log(1 - p)
# print(term1.sum(), term2.sum())
loss = (
-(t == class_ids).float() * alpha * term1
- ((t != class_ids) * (t >= 0)).float() * (1 - alpha) * term2
)
return loss.sum()
def get_num_gpus():
return int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
def reduce_sum(tensor):
if get_num_gpus() <= 1:
return tensor
import torch.distributed as dist
tensor = tensor.clone()
dist.all_reduce(tensor, op=dist.reduce_op.SUM)
return tensor
def cat(tensors, dim=0):
"""
Efficient version of torch.cat that avoids a copy if there is only a single element in a list
"""
assert isinstance(tensors, (list, tuple))
if len(tensors) == 1:
return tensors[0]
return torch.cat(tensors, dim)
def permute_and_flatten(layer, N, A, C, H, W):
layer = layer.view(N, -1, C, H, W)
layer = layer.permute(0, 3, 4, 1, 2)
layer = layer.reshape(N, -1, C)
return layer
def concat_box_prediction_layers(pred_cls, pred_reg):
pred_cls_flattened = []
pred_reg_flattened = []
# for each feature level, permute the outputs to make them be in the
# same format as the labels. Note that the labels are computed for
# all feature levels concatenated, so we keep the same representation
# for the objectness and the pred_reg
for pred_cls_per_level, pred_reg_per_level in zip(pred_cls, pred_reg):
N, AxC, H, W = pred_cls_per_level.shape
Cx16 = pred_reg_per_level.shape[1]
C = Cx16 // 16
A = 1
pred_cls_per_level = permute_and_flatten(
pred_cls_per_level, N, A, C, H, W
)
pred_cls_flattened.append(pred_cls_per_level)
pred_reg_per_level = permute_and_flatten(
pred_reg_per_level, N, A, (C*16), H, W
)
pred_reg_flattened.append(pred_reg_per_level)
# concatenate on the first dimension (representing the feature levels), to
# take into account the way the labels were generated (with all feature maps
# being concatenated as well)
pred_cls = cat(pred_cls_flattened, dim=1).reshape(-1, C)
pred_reg = cat(pred_reg_flattened, dim=1).reshape(-1, C*16)
return pred_cls, pred_reg
class PoseLoss(object):
def __init__(self, gamma, alpha, anchor_sizes, anchor_strides, positive_num, positive_lambda,
loss_weight_cls, loss_weight_reg, internal_K, diameters, target_coder):
self.cls_loss_func = SigmoidFocalLoss(gamma, alpha)
# self.centerness_loss_func = nn.BCEWithLogitsLoss(reduction="sum")
# self.matcher = Matcher(fg_iou_threshold, bg_iou_threshold, True)
self.anchor_sizes = anchor_sizes
self.anchor_strides = anchor_strides
self.positive_num = positive_num
self.positive_lambda = positive_lambda
self.loss_weight_cls = loss_weight_cls
self.loss_weight_reg = loss_weight_reg
self.internal_K = internal_K
self.target_coder = target_coder
self.diameters = diameters
def ObjectSpaceLoss(self, pred, target_3D_in_camera_frame, cls_labels, anchors, weight=None):
if not isinstance(self.diameters, torch.Tensor):
self.diameters = torch.FloatTensor(self.diameters).to(device=pred.device).view(-1)
diameter_ext = self.diameters[cls_labels.view(-1,1).repeat(1, 8*3).view(-1, 3, 1)]
cellNum = pred.shape[0]
pred_filtered = pred.view(cellNum, -1, 16)[torch.arange(cellNum), cls_labels]
pred_xy = self.target_coder.decode(pred_filtered, anchors)
# target_xy = self.target_coder.decode(target, anchors)
pred_xy = pred_xy.view(-1,2,8).transpose(1,2).contiguous().view(-1,2)
# construct normalized 2d
B = torch.inverse(self.internal_K).mm(torch.cat((pred_xy.t(), torch.ones_like(pred_xy[:,0]).view(1,-1)), dim=0)).t()
# compute projection matrices
P = torch.bmm(B.view(-1, 3, 1), B.view(-1, 1, 3)) / torch.bmm(B.view(-1, 1, 3), B.view(-1, 3, 1))
target_3D_in_camera_frame = target_3D_in_camera_frame.view(-1, 3, 1)
px = torch.bmm(P, target_3D_in_camera_frame)
target_3D_in_camera_frame = target_3D_in_camera_frame / diameter_ext
px = px / diameter_ext
scaling_factor = 50 # 0.02d
losses = nn.SmoothL1Loss(reduction='none')(scaling_factor * px, scaling_factor * target_3D_in_camera_frame).view(cellNum, -1).mean(dim=1)
losses = losses / scaling_factor
if weight is not None and weight.sum() > 0:
return (losses * weight).sum()
else:
assert losses.numel() != 0
return losses.sum()
def prepare_targets(self, targets, anchors):
cls_labels = []
reg_targets = []
aux_raw_boxes = []
aux_3D_in_camera_frame = []
level_cnt = len(anchors[0])
for im_i in range(len(targets)):
pose_targets_per_im = targets[im_i]
bbox_targets_per_im = pose_targets_per_im.to_object_boxlist()
assert bbox_targets_per_im.mode == "xyxy"
bboxes_per_im = bbox_targets_per_im.bbox
labels_per_im = pose_targets_per_im.class_ids + 1
anchors_per_im = cat_boxlist(anchors[im_i])
num_gt = bboxes_per_im.shape[0]
assert(level_cnt == len(anchors[im_i]))
#
rotations_per_im = pose_targets_per_im.rotations
translations_per_im = pose_targets_per_im.translations
mask_per_im = pose_targets_per_im.mask
#
anchor_sizes_per_level_interest = self.anchor_sizes[:level_cnt]
anchor_strides_per_level_interst = self.anchor_strides[:level_cnt]
gt_object_sizes = bbox_targets_per_im.box_span()
num_anchors_per_level = [len(anchors_per_level.bbox) for anchors_per_level in anchors[im_i]]
anchors_cx_per_im = (anchors_per_im.bbox[:, 2] + anchors_per_im.bbox[:, 0]) / 2.0
anchors_cy_per_im = (anchors_per_im.bbox[:, 3] + anchors_per_im.bbox[:, 1]) / 2.0
anchors_cx_per_im = torch.clamp(anchors_cx_per_im, min = 0, max = mask_per_im.shape[1] - 1).long()
anchors_cy_per_im = torch.clamp(anchors_cy_per_im, min = 0, max = mask_per_im.shape[0] - 1).long()
mask_at_anchors = mask_per_im[anchors_cy_per_im, anchors_cx_per_im]
mask_labels = []
for gt_i in range(num_gt):
valid_mask = (mask_at_anchors == (gt_i+1))
mask_labels.append(valid_mask)
mask_labels = torch.stack(mask_labels).t()
mask_labels = mask_labels.long()
# random selecting candidates from each level first
candidate_idxs = [[] for i in range(num_gt)]
start_idx = 0
gt_sz = gt_object_sizes.view(1,-1).repeat(level_cnt,1)
lv_sz = torch.FloatTensor(anchor_sizes_per_level_interest).type_as(gt_sz)
lv_sz = lv_sz.view(-1,1).repeat(1,num_gt)
dk = torch.log2(gt_sz/lv_sz).abs()
nk = torch.exp(-self.positive_lambda * (dk * dk))
nk = self.positive_num * nk / nk.sum(0, keepdim=True)
nk = (nk + 0.5).int()
for level in range(level_cnt):
end_idx = start_idx + num_anchors_per_level[level]
is_in_mask_per_level = mask_labels[start_idx:end_idx, :]
#
for gt_i in range(num_gt):
posi_num = nk[level][gt_i]
valid_pos = is_in_mask_per_level[:, gt_i].nonzero().view(-1)
posi_num = min(posi_num, len(valid_pos))
# rand_idx = torch.randint(0, len(valid_pos), (int(posi_num),)) # randoms with replacement
rand_idx = torch.randperm(len(valid_pos))[:posi_num] # randoms without replacement
candi_pos = valid_pos[rand_idx] + start_idx
candidate_idxs[gt_i].append(candi_pos)
#
start_idx = end_idx
# flagging selected positions
roi = torch.full_like(mask_labels, -INF)
for gt_i in range(num_gt):
tmp_idx = torch.cat(candidate_idxs[gt_i], dim=0)
roi[tmp_idx, gt_i] = 1
anchors_to_gt_values, anchors_to_gt_indexs = roi.max(dim=1)
cls_labels_per_im = labels_per_im[anchors_to_gt_indexs]
cls_labels_per_im[anchors_to_gt_values == -INF] = 0 # background setting
mask_visibilities, _ = mask_labels.max(dim=1)
# logical_and, introduced only after pytorch 1.5
# ignored_indexs = torch.logical_and(mask_visibilities==1, cls_labels_per_im==0)
ignored_indexs = (mask_visibilities == 1) * (cls_labels_per_im == 0)
cls_labels_per_im[ignored_indexs] = -1 # positions within mask but not selected will not be touched
#
matched_boxes = bboxes_per_im[anchors_to_gt_indexs]
matched_classes = (labels_per_im - 1)[anchors_to_gt_indexs]
matched_rotations = rotations_per_im[anchors_to_gt_indexs]
matched_translations = translations_per_im[anchors_to_gt_indexs]
#
matched_3Ds = pose_targets_per_im.keypoints_3d[matched_classes]
# matched_Ks = pose_targets_per_im.K.repeat(matched_classes.shape[0], 1, 1)
# TODO
# assert equals self K
if not isinstance(self.internal_K, torch.Tensor):
self.internal_K = torch.FloatTensor(self.internal_K).to(device=matched_3Ds.device).view(3, 3)
reg_targets_per_im = self.target_coder.encode(
self.internal_K, matched_3Ds,
matched_rotations, matched_translations,
anchors_per_im.bbox)
cls_labels.append(cls_labels_per_im)
reg_targets.append(reg_targets_per_im)
aux_raw_boxes.append(matched_boxes)
matched_3D_in_camera_frame = torch.bmm(matched_rotations, matched_3Ds.transpose(1, 2)) + matched_translations
aux_3D_in_camera_frame.append(matched_3D_in_camera_frame.transpose(1, 2))
return cls_labels, reg_targets, aux_raw_boxes, aux_3D_in_camera_frame
def __call__(self, pred_cls, pred_reg, targets, anchors):
labels, reg_targets, aux_raw_boxes, aux_3D_in_camera_frame = self.prepare_targets(targets, anchors)
N = len(labels)
pred_cls_flatten, pred_reg_flatten = concat_box_prediction_layers(pred_cls, pred_reg)
labels_flatten = torch.cat(labels, dim=0)
reg_targets_flatten = torch.cat(reg_targets, dim=0)
aux_raw_boxes_flatten = torch.cat(aux_raw_boxes, dim=0)
aux_3D_in_camera_frame_flatten = torch.cat(aux_3D_in_camera_frame, dim=0)
anchors_flatten = torch.cat([cat_boxlist(anchors_per_image).bbox for anchors_per_image in anchors], dim=0)
pos_inds = torch.nonzero(labels_flatten > 0).squeeze(1)
valid_cls_inds = torch.nonzero(labels_flatten >= 0).squeeze(1)
cls_loss = self.cls_loss_func(pred_cls_flatten[valid_cls_inds], labels_flatten[valid_cls_inds])
if pos_inds.numel() > 0:
pred_reg_flatten = pred_reg_flatten[pos_inds]
cls_label_flatten = labels_flatten[pos_inds] - 1 # start from class 0
reg_targets_flatten = reg_targets_flatten[pos_inds]
aux_raw_boxes_flatten = aux_raw_boxes_flatten[pos_inds]
aux_3D_in_camera_frame_flatten = aux_3D_in_camera_frame_flatten[pos_inds]
anchors_flatten = anchors_flatten[pos_inds]
reg_loss = self.ObjectSpaceLoss(
pred_reg_flatten, aux_3D_in_camera_frame_flatten,
cls_label_flatten, anchors_flatten
)
else:
reg_loss = pred_reg_flatten.sum()
return cls_loss * self.loss_weight_cls, reg_loss * self.loss_weight_reg