forked from All-Hands-AI/OpenHands
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_infer.py
415 lines (357 loc) Β· 15.8 KB
/
run_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import asyncio
import json
import os
import tempfile
from typing import Any
import pandas as pd
import toml
from datasets import load_dataset
import agenthub
from evaluation.swe_bench.prompt import CODEACT_SWE_PROMPT
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
parse_arguments,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction
from openhands.events.observation import CmdOutputObservation, ErrorObservation
from openhands.runtime.runtime import Runtime
USE_HINT_TEXT = os.environ.get('USE_HINT_TEXT', 'false').lower() == 'true'
USE_INSTANCE_IMAGE = os.environ.get('USE_INSTANCE_IMAGE', 'false').lower() == 'true'
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
'CodeActSWEAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have fixed the issue through code changes, please run the following command: <execute_bash> exit </execute_bash>.\n',
'CodeActSWEAgent': 'When you think you have fixed the issue through code changes, please run the following command: <execute_bash> exit </execute_bash>.\n',
}
def _get_swebench_workspace_dir_name(instance: pd.Series) -> str:
return f'{instance.repo}__{instance.version}'.replace('/', '__')
def get_instruction(instance: pd.Series, metadata: EvalMetadata):
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
# Prepare instruction
if metadata.agent_class == 'CodeActSWEAgent':
instruction = (
'We are currently solving the following issue within our repository. Here is the issue text:\n'
'--- BEGIN ISSUE ---\n'
f'{instance.problem_statement}\n'
'--- END ISSUE ---\n\n'
)
if USE_HINT_TEXT and instance.hints_text:
instruction += (
f'--- BEGIN HINTS ---\n{instance.hints_text}\n--- END HINTS ---\n'
)
instruction += CODEACT_SWE_PROMPT.format(workspace_dir_name=workspace_dir_name)
else:
# Testing general agents
instruction = (
f'Please fix the following issue for the repository in /workspace/{workspace_dir_name}.\n'
'Environment has been set up for you to start working. You may assume all necessary tools are installed.\n\n'
'# Problem Statement\n'
f'{instance.problem_statement}\n\n'
)
if USE_HINT_TEXT and instance.hints_text:
instruction += f'# Hints\n{instance.hints_text}\n\n'
instruction += (
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n'
'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n'
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
return instruction
def get_config(
instance: pd.Series,
metadata: EvalMetadata,
) -> AppConfig:
SWE_BENCH_CONTAINER_IMAGE = 'ghcr.io/openhands/eval-swe-bench:full-v1.2.1'
if USE_INSTANCE_IMAGE:
# We use a different instance image for the each instance of swe-bench eval
container_image = 'sweb.eval.x86_64.' + instance['instance_id']
else:
container_image = SWE_BENCH_CONTAINER_IMAGE
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='eventstream',
max_budget_per_task=4,
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
container_image=container_image,
enable_auto_lint=True,
use_host_network=False,
# large enough timeout, since some testcases take very long to run
timeout=300,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
return config
async def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Initialization Fn')
logger.info('-' * 30)
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(
command=f"""echo 'export SWE_INSTANCE_ID={instance['instance_id']}' >> ~/.bashrc && echo 'export PIP_CACHE_DIR=~/.cache/pip' >> ~/.bashrc && echo "alias git='git --no-pager'" >> ~/.bashrc"""
)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
if USE_INSTANCE_IMAGE:
# inject the init script
script_dir = os.path.dirname(__file__)
# inject the instance info
action = CmdRunAction(command='mkdir -p /swe_util/eval_data/instances')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert (
obs.exit_code == 0
), f'Failed to create /swe_util/eval_data/instances: {obs.content}'
swe_instance_json_name = 'swe-bench-instance.json'
with tempfile.TemporaryDirectory() as temp_dir:
# Construct the full path for the desired file name within the temporary directory
temp_file_path = os.path.join(temp_dir, swe_instance_json_name)
# Write to the file with the desired name within the temporary directory
with open(temp_file_path, 'w') as f:
if not isinstance(instance, dict):
json.dump([instance.to_dict()], f)
else:
json.dump([instance], f)
# Copy the file to the desired location
await runtime.copy_to(temp_file_path, '/swe_util/eval_data/instances/')
# inject the instance swe entry
await runtime.copy_to(
str(os.path.join(script_dir, 'scripts/setup/instance_swe_entry.sh')),
'/swe_util/',
)
action = CmdRunAction(command='cat ~/.bashrc')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
action = CmdRunAction(command='source ~/.bashrc')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
action = CmdRunAction(command='source /swe_util/instance_swe_entry.sh')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
else:
action = CmdRunAction(command='source /swe_util/swe_entry.sh')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert (
obs.exit_code == 0
), f'Failed to source /swe_util/swe_entry.sh: {obs.content}'
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
action = CmdRunAction(command='git reset --hard')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
action = CmdRunAction(
command='for remote_name in $(git remote); do git remote remove "${remote_name}"; done'
)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
logger.info('-' * 30)
logger.info('END Runtime Initialization Fn')
logger.info('-' * 30)
async def complete_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Completion Fn')
logger.info('-' * 30)
obs: CmdOutputObservation
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
action = CmdRunAction(command='git config --global core.pager ""')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
action = CmdRunAction(command='git add -A')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
n_retries = 0
git_patch = None
while n_retries < 5:
action = CmdRunAction(
command=f'git diff --no-color --cached {instance["base_commit"]}',
keep_prompt=False,
)
action.timeout = 600 + 100 * n_retries
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
n_retries += 1
if isinstance(obs, CmdOutputObservation):
if obs.exit_code == 0:
git_patch = obs.content.strip()
break
else:
logger.info('Failed to get git diff, retrying...')
await asyncio.sleep(10)
elif isinstance(obs, ErrorObservation):
logger.error(f'Error occurred: {obs.content}. Retrying...')
await asyncio.sleep(10)
else:
raise ValueError(f'Unexpected observation type: {type(obs)}')
logger.info('-' * 30)
logger.info('END Runtime Completion Fn')
logger.info('-' * 30)
return {'git_patch': git_patch}
async def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(instance, metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
runtime = await create_runtime(config, sid=instance.instance_id)
await initialize_runtime(runtime, instance)
instruction = get_instruction(instance, metadata)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = await run_controller(
config=config,
task_str=instruction,
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class],
)
# ======= THIS IS SWE-Bench specific =======
# Get git patch
return_val = await complete_runtime(runtime, instance)
git_patch = return_val['git_patch']
logger.info(
f'Got git diff for instance {instance.instance_id}:\n--------\n{git_patch}\n--------'
)
# ==========================================
# ======= Attempt to evaluate the agent's edits =======
# we use eval_infer.sh to evaluate the agent's edits, not here
# because the agent may alter the environment / testcases
test_result = {
'git_patch': git_patch,
}
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
metrics = state.metrics.get() if state.metrics else None
# Save the output
output = EvalOutput(
instance_id=instance.instance_id,
instruction=instruction,
instance=instance.to_dict(), # SWE Bench specific
test_result=test_result,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
)
return output
def filter_dataset(dataset: pd.DataFrame, filter_column: str) -> pd.DataFrame:
file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.toml')
if os.path.exists(file_path):
with open(file_path, 'r') as file:
data = toml.load(file)
if 'selected_ids' in data:
selected_ids = data['selected_ids']
logger.info(
f'Filtering {len(selected_ids)} tasks from "selected_ids"...'
)
subset = dataset[dataset[filter_column].isin(selected_ids)]
logger.info(f'Retained {subset.shape[0]} tasks after filtering')
return subset
return dataset
if __name__ == '__main__':
args = parse_arguments()
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenHands's repo
dataset = load_dataset('princeton-nlp/SWE-bench_Lite')
swe_bench_tests = filter_dataset(dataset['test'].to_pandas(), 'instance_id')
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
details = {}
_agent_cls = agenthub.Agent.get_cls(args.agent_cls)
if hasattr(_agent_cls, 'system_message'):
details['system_message'] = _agent_cls.system_message
if hasattr(_agent_cls, 'in_context_example'):
details['in_context_example'] = _agent_cls.in_context_example
metadata = make_metadata(
llm_config,
'swe-bench-lite',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
details=details,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(swe_bench_tests, output_file, args.eval_n_limit)
asyncio.run(
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)
)