forked from All-Hands-AI/OpenHands
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_infer.py
310 lines (263 loc) Β· 10.3 KB
/
run_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
"""Implements evaluation of agents on ML-Bench, a benchmark for assessing the effectiveness of
Large Language Models (LLMs) in leveraging existing functions in open-source libraries for
machine learning tasks. The benchmark is introduced in the paper "ML-Bench: Evaluating Large
Language Models for Code Generation in Repository-Level Machine Learning Tasks"
(https://arxiv.org/abs/2311.09835).
Please see https://ghcr.io/super-dainiu/ml_bench and https://huggingface.co/datasets/super-dainiu/ml-bench
for more details on the dataset and docker image used in this evaluation script.
TODOs:
- Support additional evaluation settings, such as providing raw README content or using a
retriever to extract relevant segments.
- Clean up the code and docker image used for evaluation.
"""
import os
from typing import Any
import pandas as pd
from datasets import load_dataset
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
load_app_config,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.runtime import Runtime
config = load_app_config()
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have completed the task, please run the following command: <execute_bash> exit </execute_bash>.\n'
}
ID2CONDA = {
1: 'dgl_DS',
2: 'bert_DS',
3: 'lavis_DS',
4: 'if_DS',
5: 'V2V_DS',
6: 'esm_DS',
7: 'OP_DS',
8: 'TSL_DS',
9: 'EAP_DS',
10: 'PG_DS',
11: 'PIM_DS',
12: 'AD2_DS',
13: 'L3_DS',
14: 'MZ2_DS',
15: 'GSA2_DS',
}
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='eventstream',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
container_image='public.ecr.aws/i5g0m1f6/ml-bench',
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
return config
async def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0
# Set up the task environment
action = CmdRunAction(command=f'conda activate {ID2CONDA[instance["github_id"]]}')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0
repo_url = instance['github']
repo_name = repo_url.split('/')[-1]
action = CmdRunAction(command=f'git clone {repo_url} /workspace/{repo_name}')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command=f'chmod -R 777 /workspace/{repo_name}')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0
# Navigate to the task's code path
task_path = os.path.join('/workspace', repo_name, instance['path'][2:])
action = CmdRunAction(command=f'cd {task_path}')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
async def complete_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
obs: CmdOutputObservation
repo_url = instance['github']
repo_name = repo_url.split('/')[-1]
task_path = os.path.join('/workspace', repo_name, instance['path'][2:])
# Evaluate the agent's script
eval_script = os.path.join(task_path, 'run.sh')
logger.info(f'Running evaluation script: {eval_script}')
action = CmdRunAction(command=f'cat {eval_script}', keep_prompt=False)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
if obs.exit_code == 0:
eval_script_content = obs.content
else:
logger.error(f'Error reading evaluation script: {obs.content}')
eval_script_content = ''
action = CmdRunAction(
command=f'timeout 120s conda run -n {ID2CONDA[instance["github_id"]]} bash {eval_script}',
timeout=600,
)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
if obs.exit_code == 0:
eval_output = obs.content
else:
logger.error(f'Error running evaluation script: {obs.content}')
eval_output = ''
outputs = {
'eval_script_content': eval_script_content,
'eval_output': eval_output,
}
if obs.exit_code != 0 and obs.exit_code != 124:
logger.warning(f'Evaluation script failed with exit code {obs.exit_code}')
logger.warning(f'Output: {eval_output}')
outputs['success'] = int(
'KeyboardInterrupt' in eval_output
) # super-dainiu: assume ``KeyboardInterrupt`` is a success as is done in ML-Bench
else:
logger.info(f'Evaluation script succeeded with exit code {obs.exit_code}')
logger.info(f'Output: {eval_output}')
outputs['success'] = 1
outputs['eval_exit_code'] = obs.exit_code
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
return outputs
async def process_instance(
instance: Any, metadata: EvalMetadata, reset_logger: bool = True
):
config = get_config(metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir)
else:
logger.info(f'Starting evaluation for instance {instance["instance_id"]}.')
# Create a sandbox, using the instance ID and PID as the session ID to avoid conflicts
sid = str(instance['instance_id'])
repo_url = instance['github']
repo_name = repo_url.split('/')[-1]
task_path = os.path.join('/workspace', repo_name, instance['path'][2:])
# Prepare the task instruction
instruction = (
f'Please complete the Machine Learning task in the following repository: {repo_name}\n\n'
f'{instance["instruction"]}\n\n'
'You should create a script named `run.sh` under the specified path in the repo to run the task.\n\n'
f'You can find the task repo at: {task_path}\n\n'
+ (
'Here is the prefix code for the task:\n'
'```bash\n'
f'{instance["prefix_code"]}\n'
'```\n\n'
if instance['prefix_code']
else ''
)
+ 'You should terminate the subprocess after running the task (e.g., call subprocess.Popen(args).wait()).'
)
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
runtime = await create_runtime(config, sid=sid)
await initialize_runtime(runtime, instance)
# Run the agent
state: State | None = await run_controller(
config=config,
task_str=instruction,
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
metadata.agent_class
),
)
assert state is not None
metrics = state.metrics.get() if state.metrics else {}
test_result = await complete_runtime(runtime)
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
# Save the output
output = EvalOutput(
instance_id=instance['instance_id'],
instance=instance.to_dict(),
instruction=instruction,
metadata=metadata,
history=histories,
test_result=test_result,
metrics=metrics,
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'-s',
'--eval-split',
type=str,
default='quarter',
choices=['full', 'quarter'],
help='data split to evaluate on, either full or quarter',
)
args, _ = parser.parse_known_args()
data_split = args.eval_split
ml_bench = load_dataset('super-dainiu/ml-bench', split=data_split).to_pandas()
ml_bench.rename(columns={'id': 'instance_id'}, inplace=True)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
f'ml-bench-{data_split}',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(ml_bench, output_file, args.eval_n_limit)
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)