forked from All-Hands-AI/OpenHands
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_infer.py
366 lines (312 loc) Β· 14 KB
/
run_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""Overview:
This code implements the evaluation of agents on the GPQA Benchmark with Open Book setting.
- The benchmark consists of 448 high-quality and extremely difficult multiple-choice questions in the domains of biology, physics, and chemistry. The questions are intentionally designed to be "Google-proof," meaning that even highly skilled non-expert validators achieve only 34% accuracy despite unrestricted access to the web.
- Even experts in the corresponding domains achieve only 65% accuracy.
- State-of-the-art AI systems achieve only 39% accuracy on this challenging dataset.
Accurate solving of above graduate level questions would require both tool use (e.g., python for calculations) and web-search for finding related facts as information required for the questions might not be part of the LLM knowledge / training data.
Further references:
- https://arxiv.org/pdf/2311.12022
- https://paperswithcode.com/dataset/gpqa
- https://github.com/idavidrein/gpqa
TODOs:
- Add evaluation on other Agent classes
- Batch inference and evaluation of agents on the GPQA Benchmark.
"""
import asyncio
import os
import random
import re
from typing import Callable
import pandas as pd
from datasets import load_dataset
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import (
Action,
AgentFinishAction,
MessageAction,
)
from openhands.events.observation import Observation
ACTION_FORMAT = """
<<FINAL_ANSWER||
<insert correct answer here, must be one of A, B, C, D> (Please dont use any additional characters. Just the letter of the correct answer (A/B/C/D).)
||FINAL_ANSWER>>
""".strip()
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='eventstream',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
container_image='python:3.11-bookworm',
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
return config
def gpqa_codeact_user_response(
state: State,
encapsulate_solution: bool = False,
try_parse: Callable[[Action], str] | None = None,
) -> str:
msg = (
'Please continue working on the task on whatever approach you think is suitable.\n'
'Feel free to use all tools for calculations and solving the problem, and web-search for finding relevant facts during the process if needed\n'
'If you have finished reporting the answer in the expected format, (and only once that is done), please run the following command to submit: <execute_bash> exit </execute_bash>.\n'
'Again you are being told a million times to first report the answer in the requested format (see again below for reference) before exiting. DO NOT EXIT WITHOUT REPORTING THE ANSWER FIRST.\n'
'That is, when you have decided on the answer report in the following format:\n'
f'{ACTION_FORMAT}\n'
'<execute_bash> exit </execute_bash>\n'
'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP TO SOLVE THIS TASK.\n'
)
return msg
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {'CodeActAgent': gpqa_codeact_user_response}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': '\n\n SUPER IMPORTANT: When you think you have solved the question, first report it back to the user in the requested format. Only once that is done, in the next turn, please run the following command: <execute_bash> exit </execute_bash>.\n'
}
def parse_final_answer(final_answer: str | None) -> str | None:
"""Parse the final answer from the final message generated by the agent
to extract the final answer. The final answer is usually enclosed in the format:
<<FINAL_ANSWER||
<insert correct answer here>
||FINAL_ANSWER>>
"""
# to do this first extract the part enclosed in the format <<FINAL_ANSWER|| ... ||FINAL_ANSWER>>
pattern = re.compile(r'<<FINAL_ANSWER\|\|(.*?)\|\|FINAL_ANSWER>>', re.DOTALL)
match = pattern.search(final_answer)
# and then strip it, remove any leading/trailing spaces line breaks etc.
answer = match.group(1).strip()
# finally capitalize it
answer = answer.upper()
# and then return A, B, C, D depending on whether the answer A, B, C, D is found in the final answer
for letter in ['A', 'B', 'C', 'D']:
if letter in answer:
return letter
def compare_answers(model_output: str | None, ground_truth: str):
"""Compare the predicted answer with the ground truth answer"""
try:
# parse the final answer from model output
predicted_answer = parse_final_answer(model_output)
except Exception as e:
# Log the exception
logger.error(f'An error occurred: {e}\n defaulting to random guess ...')
# choose a random answer if the model output is not in the correct format
predicted_answer = random.choice(['A', 'B', 'C', 'D'])
logger.info('#############################################')
logger.info(f'Predicted answer: {predicted_answer}')
logger.info(f'Ground truth answer: {ground_truth}')
logger.info('#############################################')
return predicted_answer == ground_truth
def convert_instance_dict(instance):
"""Used for preprocessing the hf dataset into a format that can be used by the agent.
Reads and extracts relevant information from the dataset instance.
"""
out_instance_dict = {}
out_instance_dict['question'] = instance['Question']
correct_answer = instance['Correct Answer']
out_instance_dict['choices'] = [
correct_answer,
instance['Incorrect Answer 1'],
instance['Incorrect Answer 2'],
instance['Incorrect Answer 3'],
]
# Randomize the order of choices
random.shuffle(out_instance_dict['choices'])
# Find the index of the correct answer after shuffling and store it as a letter (A/B/C/D)
correct_index = out_instance_dict['choices'].index(correct_answer)
correct_letter = chr(
65 + correct_index
) # Convert index (0-3) to corresponding letter (A-D)
out_instance_dict['correct_solution'] = correct_letter
return out_instance_dict
async def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
):
config = get_config(metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir)
else:
logger.info(f'Starting evaluation for instance {instance["instance_id"]}.')
# ======= Run the agent on the instance =======
# Prepare instruction for the agent using suggested format in gpqa codebase
instruction = f"""
What is the correct answer to this question:\n
{instance['question']}\n
Choices:\n
(A) {instance['choices'][0]}\n
(B) {instance['choices'][1]}\n
(C) {instance['choices'][2]}\n
(D) {instance['choices'][3]}\n
\n\n
MOST IMPORTANT: Format your response as follows:
{ACTION_FORMAT}
Additional Instructions:
- Do not try to solve the question in a single step. Break it down into smaller steps.
- You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.
- SUPER IMPORTANT: When you have reported the answer to the user in the requested format, (and only once that is done) in the next turn, please run the following command: <execute_bash> exit </execute_bash>.
- Again you are being told a million times to first report the answer in the requested format (see again below for reference) before exiting. DO NOT EXIT WITHOUT REPORTING THE ANSWER FIRST.
That is, when you have decided on the answer report in the following format:
{ACTION_FORMAT}
<execute_bash> exit </execute_bash>
Again do not quit without reporting the answer first.
Ok now its time to start solving the question. Good luck!
"""
runtime = await create_runtime(config, sid=f'gptq_{str(instance.instance_id)}')
state: State | None = await run_controller(
config=config,
task_str=instruction,
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
metadata.agent_class
),
)
assert state is not None, 'State should not be None.'
# ======= Attempt to evaluate the agent's edits =======
question_choices = {
'A': instance['choices'][0],
'B': instance['choices'][1],
'C': instance['choices'][2],
'D': instance['choices'][3],
}
# get the final message from the state history (default to empty if not found)
found_answers = {
'A': False,
'B': False,
'C': False,
'D': False,
}
for event in state.history.get_events(reverse=True):
if (
isinstance(event, AgentFinishAction)
and event.source != 'user'
and '<<FINAL_ANSWER||' in event.thought
):
final_message = event.thought
break
elif (
isinstance(event, MessageAction)
and event.source != 'user'
and '<<FINAL_ANSWER||' in event.content
):
final_message = event.content
break
elif isinstance(event, Observation):
for option, option_text in question_choices.items():
if option_text in event.content:
found_answers[option] = True
else:
final_message = None
found_options = [option for option, found in found_answers.items() if found]
logger.info('#############################################')
logger.info(f'Final message generated by the agent: {final_message}')
logger.info('#############################################')
# check if the model output matches the ground truth
test_result = compare_answers(final_message, instance.correct_solution)
if final_message is None and len(found_options) > 0:
_selected = random.choice(found_options)
# if the final message is None, then the agent did not report the answer in the correct format
# so we randomly select one of the found options and compare it with the correct solution
test_result = _selected == instance.correct_solution
logger.info('#############################################')
logger.info('Agent did not report the answer in the correct format.')
logger.info(f'Found options: {found_options}')
logger.info(f'Selected option: {_selected}')
logger.info('#############################################')
logger.info('#############################################')
logger.info(f'Test result: {test_result}')
logger.info('#############################################')
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
metrics = state.metrics.get() if state.metrics else None
# Save the output
output = EvalOutput(
instance_id=str(instance.instance_id),
instruction=instruction,
metadata=metadata,
history=state.history.compatibility_for_eval_history_pairs(),
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'result': test_result,
'found_answers': found_answers,
'last_message': final_message,
},
)
return output
if __name__ == '__main__':
parser = get_parser()
# data split must be one of 'gpqa_main', 'gqpa_diamond', 'gpqa_experts', 'gpqa_extended'
parser.add_argument(
'--data-split',
type=str,
choices=['gpqa_main', 'gpqa_diamond', 'gpqa_experts', 'gpqa_extended'],
default='gpqa_diamond',
help='data split to evaluate, eg. gpqa_diamond',
)
args, _ = parser.parse_known_args()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenHands's repo
dataset = load_dataset('Idavidrein/gpqa', args.data_split)
gpqa_dataset = dataset['train']
# preprocess the dataset
gpqa_dataset = gpqa_dataset.map(convert_instance_dict)
gpqa_dataset = gpqa_dataset.to_pandas()
# Add a new column 'instance_id' with the index
gpqa_dataset['instance_id'] = gpqa_dataset.index
if args.agent_cls != 'CodeActAgent':
raise ValueError(
f'Agent class {args.agent_cls} not supported for GPQA evaluation.'
)
metadata = make_metadata(
llm_config=llm_config,
dataset_name=args.data_split,
agent_class=args.agent_cls,
max_iterations=args.max_iterations,
eval_note=args.eval_note,
eval_output_dir=args.eval_output_dir,
data_split=args.data_split,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
prepared_dataset = prepare_dataset(gpqa_dataset, output_file, args.eval_n_limit)
asyncio.run(
run_evaluation(
dataset=prepared_dataset,
metadata=metadata,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance,
)
)