-
Notifications
You must be signed in to change notification settings - Fork 0
/
Ex2_57.scm
109 lines (83 loc) · 2.25 KB
/
Ex2_57.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (=number? exp num)
(and (number? exp) (= exp num)))
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
(else (make-sum-list (list a1 a2)))))
(define (make-sum-list l)
(if (= (length l) 2)
(list '+ (car l) (cadr l))
(make-sum (car l) (make-sum-list (cdr l)))))
(define (make-product-list l)
(if (= (length l) 2)
(list '* (car l) (cadr l))
(make-product (car l) (make-product-list (cdr l)))))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (make-product-list (list m1 m2)))))
(append (list 1 23) (list 'a))
(define (sum? x)
(and (pair? x) (eq? (car x) '+)))
(define (addend s)
(cadr s))
(define (augend s)
(let ((a (cddr s)))
(if (= (length a) 1)
(car a)
(make-sum-list a))))
(define (product? x)
(and (pair? x) (eq? (car x) '*)))
(define (multiplier p)
(cadr p))
(define (multiplicand p)
(let ((m (cddr p)))
(if (= (length m) 1)
(car m)
(make-product-list m))))
(define (exponentiation? x)
(and (pair? x) (eq? (car x) 'expt)))
(define (base x)
(cadr x))
(define (exponent x)
(caddr x))
(define (make-exponentiation b e)
(cond ((= e 0) 1)
((= e 1) b)
(else (list 'expt b e))))
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(let ((n (exponent exp))
(u (base exp)))
(make-product
(make-product n (make-exponentiation u (- n 1)))
(deriv u var))))
(else
(error "unknown expression type -- DERIV" exp))))
(deriv '(+ x 3) 'x)
(deriv '(* x y) 'x)
(deriv '(expt x 3) 'x)
(deriv '(+ x y z) 'x)
(deriv '(* x y (+ x 3)) 'x)
(deriv '(+ (* x 3) (* x y) (* x 4)) 'x)
(make-sum-list '(y z))
(length '(y z))
(list '+ (car '(y z)) (cadr '(y z)))