Skip to content

Latest commit

 

History

History
103 lines (69 loc) · 5.89 KB

crates.md

File metadata and controls

103 lines (69 loc) · 5.89 KB

Crates

LibAFL is composed of different crates. A crate is an individual library in Rust's Cargo build system, that you can use by adding it to your project's Cargo.toml, like:

[dependencies]
libafl = { version = "*" }

Crate List

For LibAFL, each crate has its self-contained purpose, and the user may not need to use all of them in their project. Following the naming convention of the folders in the project's root, they are:

This is the main crate that contains all the components needed to build a fuzzer.

This crate has a number of feature flags that enable and disable certain aspects of LibAFL. The features can be found in LibAFL's Cargo.toml under "[features]", and are usually explained with comments there. Some features worthy of remark are:

  • std enables the parts of the code that use the Rust standard library. Without this flag, LibAFL is no_std compatible. This disables a range of features, but allows us to use LibAFL in embedded environments, read the no_std section for further details.
  • derive enables the usage of the derive(...) macros defined in libafl_derive from libafl.
  • rand_trait allows you to use LibAFL's very fast (but insecure!) random number generator wherever compatibility with Rust's rand crate is needed.
  • llmp_bind_public makes LibAFL's LLMP bind to a public TCP port, over which other fuzzers nodes can communicate with this instance.
  • introspection adds performance statistics to LibAFL.

You can choose the features by using features = ["feature1", "feature2", ...] for LibAFL in your Cargo.toml. Out of this list, by default, std, derive, and rand_trait are already set. You can choose to disable them by setting default-features = false in your Cargo.toml.

The libafl_bolts crate is a minimal tool shed filled with useful low-level rust features, not necessarily related to fuzzers. In it, you'll find highlights like:

  • core_affinity to bind the current process to cores
  • SerdeAnyMap a map that can store typed values in a serializable fashion
  • minibsod to dump the current process state
  • LLMP, "low level message passing", a lock-free IPC mechanism
  • Rand, different fast (non-cryptographically secure) RNG implementations like RomuRand
  • ShMem, a platform independent shard memory implementation
  • Tuples, a compiletime tuple implementation

... and much more.

The sugar crate abstracts away most of the complexity of LibAFL's API. Instead of high flexibility, it aims to be high-level and easy-to-use. It is not as flexible as stitching your fuzzer together from each individual component, but allows you to build a fuzzer with minimal lines of code. To see it in action, take a look at the libfuzzer_stb_image_sugar example fuzzer.

This a proc-macro crate paired with the libafl crate.

At the moment, it just exposes the derive(SerdeAny) macro that can be used to define Metadata structs, see the section about Metadata for details.

This crate exposes code to interact with, and to instrument, targets. To enable and disable features at compile-time, the features are enabled and disabled using feature flags.

Currently, the supported flags are:

  • pcguard_edges defines the SanitizerCoverage trace-pc-guard hooks to track the executed edges in a map.
  • pcguard_hitcounts defines the SanitizerCoverage trace-pc-guard hooks to track the executed edges with the hitcounts (like AFL) in a map.
  • libfuzzer exposes a compatibility layer with libFuzzer style harnesses.
  • value_profile defines the SanitizerCoverage trace-cmp hooks to track the matching bits of each comparison in a map.

This is a library that provides utils to wrap compilers and create source-level fuzzers.

At the moment, only the Clang compiler is supported. To understand it deeper, look through the tutorials and examples.

This library bridges LibAFL with Frida as instrumentation backend. With this crate, you can instrument targets on Linux/macOS/Windows/Android for coverage collection. Additionally, it supports CmpLog, and AddressSanitizer instrumentation and runtimes for aarch64. See further information, as well as usage instructions, later in the book.

This library bridges LibAFL with QEMU user-mode to fuzz ELF cross-platform binaries.

It works on Linux and can collect edge coverage without collisions! It also supports a wide range of hooks and instrumentation options.

Nyx is a KVM-based snapshot fuzzer. libafl_nyx adds these capabilities to LibAFL. There is a specific section explaining usage of libafl_nyx later in the book.

Concolic fuzzing is the combination of fuzzing and a symbolic execution engine. This can reach greater depth than normal fuzzing, and is exposed in this crate. There is a specific section explaining usage of libafl_concolic later in the book.