-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
40 lines (30 loc) · 1.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
import torch.nn.functional as F
from layer import *
class Model(torch.nn.Module):
def __init__(self, args):
super(Model, self).__init__()
self.args = args
if args.gnn == 'gcn':
self.gnn = GCN(args)
elif args.gnn == 'sage':
self.gnn = SAGE(args)
elif args.gnn == 'gat':
self.gnn = GAT(args)
elif args.gnn == 'gin':
self.gnn = GIN(args)
else:
assert args.gnn in ('gcn', 'sage', 'gat', 'gin'), 'Invalid gnn'
self.reset_parameters()
def reset_parameters(self):
self.gnn.reset_parameters()
def forward(self, x, edge_index, edge_weight=None):
x = self.feat_bottleneck(x, edge_index, edge_weight)
x = self.feat_classifier(x)
return F.log_softmax(x, dim=1)
def feat_bottleneck(self, x, edge_index, edge_weight=None):
x = self.gnn.feat_bottleneck(x, edge_index, edge_weight)
return x
def feat_classifier(self, x):
x = self.gnn.feat_classifier(x)
return x