-
Notifications
You must be signed in to change notification settings - Fork 1
/
dijkstra.py
1084 lines (883 loc) · 32.1 KB
/
dijkstra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Shortest path algorithms for weighed graphs.
"""
__author__ = """\n""".join(['Aric Hagberg <[email protected]>',
'Loïc Séguin-C. <[email protected]>',
'Dan Schult <[email protected]>'])
# Copyright (C) 2004-2015 by
# Aric Hagberg <[email protected]>
# Dan Schult <[email protected]>
# Pieter Swart <[email protected]>
# All rights reserved.
# BSD license.
__all__ = ['dijkstra_path',
'dijkstra_path_length',
'bidirectional_dijkstra',
'single_source_dijkstra',
'single_source_dijkstra_path',
'single_source_dijkstra_path_length',
'all_pairs_dijkstra_path',
'all_pairs_dijkstra_path_length',
'dijkstra_predecessor_and_distance',
'bellman_ford',
'negative_edge_cycle',
'goldberg_radzik',
'johnson']
from collections import deque
from heapq import heappush, heappop
from itertools import count
import networkx as nx
from networkx.utils import generate_unique_node
def dijkstra_path(G, source, target, weight='weight'):
"""Returns the shortest path from source to target in a weighted graph G.
Parameters
----------
G : NetworkX graph
source : node
Starting node
target : node
Ending node
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
Returns
-------
path : list
List of nodes in a shortest path.
Raises
------
NetworkXNoPath
If no path exists between source and target.
Examples
--------
>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path(G,0,4))
[0, 1, 2, 3, 4]
Notes
------
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
bidirectional_dijkstra()
"""
(length, path) = single_source_dijkstra(G, source, target=target,
weight=weight)
try:
return path[target]
except KeyError:
raise nx.NetworkXNoPath(
"node %s not reachable from %s" % (source, target))
def dijkstra_path_length(G, source, target, weight='weight'):
"""Returns the shortest path length from source to target
in a weighted graph.
Parameters
----------
G : NetworkX graph
source : node label
starting node for path
target : node label
ending node for path
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
Returns
-------
length : number
Shortest path length.
Raises
------
NetworkXNoPath
If no path exists between source and target.
Examples
--------
>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path_length(G,0,4))
4
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
bidirectional_dijkstra()
"""
length = single_source_dijkstra_path_length(G, source, weight=weight)
try:
return length[target]
except KeyError:
raise nx.NetworkXNoPath(
"node %s not reachable from %s" % (source, target))
def single_source_dijkstra_path(G, source, cutoff=None, weight='weight'):
"""Compute shortest path between source and all other reachable
nodes for a weighted graph.
Parameters
----------
G : NetworkX graph
source : node
Starting node for path.
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
paths : dictionary
Dictionary of shortest path lengths keyed by target.
Examples
--------
>>> G=nx.path_graph(5)
>>> path=nx.single_source_dijkstra_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
single_source_dijkstra()
"""
(length, path) = single_source_dijkstra(
G, source, cutoff=cutoff, weight=weight)
return path
def single_source_dijkstra_path_length(G, source, cutoff=None,
weight='weight'):
"""Compute the shortest path length between source and all other
reachable nodes for a weighted graph.
Parameters
----------
G : NetworkX graph
source : node label
Starting node for path
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight.
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
length : dictionary
Dictionary of shortest lengths keyed by target.
Examples
--------
>>> G=nx.path_graph(5)
>>> length=nx.single_source_dijkstra_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
single_source_dijkstra()
"""
if G.is_multigraph():
get_weight = lambda u, v, data: min(
eattr.get(weight, 1) for eattr in data.values())
else:
get_weight = lambda u, v, data: data.get(weight, 1)
return _dijkstra(G, source, get_weight, cutoff=cutoff)
def single_source_dijkstra(G, source, target=None, cutoff=None, weight='weight'):
"""Compute shortest paths and lengths in a weighted graph G.
Uses Dijkstra's algorithm for shortest paths.
Parameters
----------
G : NetworkX graph
source : node label
Starting node for path
target : node label, optional
Ending node for path
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
distance,path : dictionaries
Returns a tuple of two dictionaries keyed by node.
The first dictionary stores distance from the source.
The second stores the path from the source to that node.
Examples
--------
>>> G=nx.path_graph(5)
>>> length,path=nx.single_source_dijkstra(G,0)
>>> print(length[4])
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
>>> path[4]
[0, 1, 2, 3, 4]
Notes
---------
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
Based on the Python cookbook recipe (119466) at
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466
This algorithm is not guaranteed to work if edge weights
are negative or are floating point numbers
(overflows and roundoff errors can cause problems).
See Also
--------
single_source_dijkstra_path()
single_source_dijkstra_path_length()
"""
if source == target:
return ({source: 0}, {source: [source]})
if G.is_multigraph():
get_weight = lambda u, v, data: min(
eattr.get(weight, 1) for eattr in data.values())
else:
get_weight = lambda u, v, data: data.get(weight, 1)
paths = {source: [source]} # dictionary of paths
return _dijkstra(G, source, get_weight, paths=paths, cutoff=cutoff,
target=target)
def _dijkstra(G, source, get_weight, pred=None, paths=None, cutoff=None,
target=None):
"""Implementation of Dijkstra's algorithm
Parameters
----------
G : NetworkX graph
source : node label
Starting node for path
get_weight: function
Function for getting edge weight
pred: list, optional(default=None)
List of predecessors of a node
paths: dict, optional (default=None)
Path from the source to a target node.
target : node label, optional
Ending node for path
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
distance,path : dictionaries
Returns a tuple of two dictionaries keyed by node.
The first dictionary stores distance from the source.
The second stores the path from the source to that node.
pred,distance : dictionaries
Returns two dictionaries representing a list of predecessors
of a node and the distance to each node.
distance : dictionary
Dictionary of shortest lengths keyed by target.
"""
G_succ = G.succ if G.is_directed() else G.adj
push = heappush
pop = heappop
dist = {} # dictionary of final distances
seen = {source: 0}
c = count()
fringe = [] # use heapq with (distance,label) tuples
push(fringe, (0, next(c), source))
while fringe:
(d, _, v) = pop(fringe)
if v in dist:
continue # already searched this node.
dist[v] = d
if v == target:
break
for u, e in G_succ[v].items():
cost = get_weight(v, u, e)
if cost is None:
continue
vu_dist = dist[v] + get_weight(v, u, e)
if cutoff is not None:
if vu_dist > cutoff:
continue
if u in dist:
if vu_dist < dist[u]:
raise ValueError('Contradictory paths found:',
'negative weights?')
elif u not in seen or vu_dist < seen[u]:
seen[u] = vu_dist
push(fringe, (vu_dist, next(c), u))
if paths is not None:
paths[u] = paths[v] + [u]
if pred is not None:
pred[u] = [v]
elif vu_dist == seen[u]:
if pred is not None:
pred[u].append(v)
if paths is not None:
return (dist, paths)
if pred is not None:
return (pred, dist)
return dist
def dijkstra_predecessor_and_distance(G, source, cutoff=None, weight='weight'):
"""Compute shortest path length and predecessors on shortest paths
in weighted graphs.
Parameters
----------
G : NetworkX graph
source : node label
Starting node for path
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
pred,distance : dictionaries
Returns two dictionaries representing a list of predecessors
of a node and the distance to each node.
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
The list of predecessors contains more than one element only when
there are more than one shortest paths to the key node.
"""
if G.is_multigraph():
get_weight = lambda u, v, data: min(
eattr.get(weight, 1) for eattr in data.values())
else:
get_weight = lambda u, v, data: data.get(weight, 1)
pred = {source: []} # dictionary of predecessors
return _dijkstra(G, source, get_weight, pred=pred, cutoff=cutoff)
def all_pairs_dijkstra_path_length(G, cutoff=None, weight='weight'):
""" Compute shortest path lengths between all nodes in a weighted graph.
Parameters
----------
G : NetworkX graph
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
distance : dictionary
Dictionary, keyed by source and target, of shortest path lengths.
Examples
--------
>>> G=nx.path_graph(5)
>>> length=nx.all_pairs_dijkstra_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
The dictionary returned only has keys for reachable node pairs.
"""
length = single_source_dijkstra_path_length
# TODO This can be trivially parallelized.
return {n: length(G, n, cutoff=cutoff, weight=weight) for n in G}
def all_pairs_dijkstra_path(G, cutoff=None, weight='weight'):
""" Compute shortest paths between all nodes in a weighted graph.
Parameters
----------
G : NetworkX graph
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
distance : dictionary
Dictionary, keyed by source and target, of shortest paths.
Examples
--------
>>> G=nx.path_graph(5)
>>> path=nx.all_pairs_dijkstra_path(G)
>>> print(path[0][4])
[0, 1, 2, 3, 4]
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
floyd_warshall()
"""
path = single_source_dijkstra_path
# TODO This can be trivially parallelized.
return {n: path(G, n, cutoff=cutoff, weight=weight) for n in G}
def bellman_ford(G, source, weight='weight'):
"""Compute shortest path lengths and predecessors on shortest paths
in weighted graphs.
The algorithm has a running time of O(mn) where n is the number of
nodes and m is the number of edges. It is slower than Dijkstra but
can handle negative edge weights.
Parameters
----------
G : NetworkX graph
The algorithm works for all types of graphs, including directed
graphs and multigraphs.
source: node label
Starting node for path
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
Returns
-------
pred, dist : dictionaries
Returns two dictionaries keyed by node to predecessor in the
path and to the distance from the source respectively.
Raises
------
NetworkXUnbounded
If the (di)graph contains a negative cost (di)cycle, the
algorithm raises an exception to indicate the presence of the
negative cost (di)cycle. Note: any negative weight edge in an
undirected graph is a negative cost cycle.
Examples
--------
>>> import networkx as nx
>>> G = nx.path_graph(5, create_using = nx.DiGraph())
>>> pred, dist = nx.bellman_ford(G, 0)
>>> sorted(pred.items())
[(0, None), (1, 0), (2, 1), (3, 2), (4, 3)]
>>> sorted(dist.items())
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
>>> from nose.tools import assert_raises
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> G[1][2]['weight'] = -7
>>> assert_raises(nx.NetworkXUnbounded, nx.bellman_ford, G, 0)
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
The dictionaries returned only have keys for nodes reachable from
the source.
In the case where the (di)graph is not connected, if a component
not containing the source contains a negative cost (di)cycle, it
will not be detected.
"""
if source not in G:
raise KeyError("Node %s is not found in the graph" % source)
for u, v, attr in G.selfloop_edges(data=True):
if attr.get(weight, 1) < 0:
raise nx.NetworkXUnbounded("Negative cost cycle detected.")
dist = {source: 0}
pred = {source: None}
if len(G) == 1:
return pred, dist
return _bellman_ford_relaxation(G, pred, dist, [source], weight)
def _bellman_ford_relaxation(G, pred, dist, source, weight):
"""Relaxation loop for Bellman–Ford algorithm
Parameters
----------
G : NetworkX graph
pred: dict
Keyed by node to predecessor in the path
dist: dict
Keyed by node to the distance from the source
source: list
List of source nodes
weight: string
Edge data key corresponding to the edge weight
Returns
-------
Returns two dictionaries keyed by node to predecessor in the
path and to the distance from the source respectively.
Raises
------
NetworkXUnbounded
If the (di)graph contains a negative cost (di)cycle, the
algorithm raises an exception to indicate the presence of the
negative cost (di)cycle. Note: any negative weight edge in an
undirected graph is a negative cost cycle
"""
if G.is_multigraph():
def get_weight(edge_dict):
return min(eattr.get(weight, 1) for eattr in edge_dict.values())
else:
def get_weight(edge_dict):
return edge_dict.get(weight, 1)
G_succ = G.succ if G.is_directed() else G.adj
inf = float('inf')
n = len(G)
count = {}
q = deque(source)
in_q = set(source)
while q:
u = q.popleft()
in_q.remove(u)
# Skip relaxations if the predecessor of u is in the queue.
if pred[u] not in in_q:
dist_u = dist[u]
for v, e in G_succ[u].items():
dist_v = dist_u + get_weight(e)
if dist_v < dist.get(v, inf):
if v not in in_q:
q.append(v)
in_q.add(v)
count_v = count.get(v, 0) + 1
if count_v == n:
raise nx.NetworkXUnbounded(
"Negative cost cycle detected.")
count[v] = count_v
dist[v] = dist_v
pred[v] = u
return pred, dist
def goldberg_radzik(G, source, weight='weight'):
"""Compute shortest path lengths and predecessors on shortest paths
in weighted graphs.
The algorithm has a running time of O(mn) where n is the number of
nodes and m is the number of edges. It is slower than Dijkstra but
can handle negative edge weights.
Parameters
----------
G : NetworkX graph
The algorithm works for all types of graphs, including directed
graphs and multigraphs.
source: node label
Starting node for path
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
Returns
-------
pred, dist : dictionaries
Returns two dictionaries keyed by node to predecessor in the
path and to the distance from the source respectively.
Raises
------
NetworkXUnbounded
If the (di)graph contains a negative cost (di)cycle, the
algorithm raises an exception to indicate the presence of the
negative cost (di)cycle. Note: any negative weight edge in an
undirected graph is a negative cost cycle.
Examples
--------
>>> import networkx as nx
>>> G = nx.path_graph(5, create_using = nx.DiGraph())
>>> pred, dist = nx.goldberg_radzik(G, 0)
>>> sorted(pred.items())
[(0, None), (1, 0), (2, 1), (3, 2), (4, 3)]
>>> sorted(dist.items())
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
>>> from nose.tools import assert_raises
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> G[1][2]['weight'] = -7
>>> assert_raises(nx.NetworkXUnbounded, nx.goldberg_radzik, G, 0)
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
The dictionaries returned only have keys for nodes reachable from
the source.
In the case where the (di)graph is not connected, if a component
not containing the source contains a negative cost (di)cycle, it
will not be detected.
"""
if source not in G:
raise KeyError("Node %s is not found in the graph" % source)
for u, v, attr in G.selfloop_edges(data=True):
if attr.get(weight, 1) < 0:
raise nx.NetworkXUnbounded("Negative cost cycle detected.")
if len(G) == 1:
return {source: None}, {source: 0}
if G.is_multigraph():
def get_weight(edge_dict):
return min(attr.get(weight, 1) for attr in edge_dict.values())
else:
def get_weight(edge_dict):
return edge_dict.get(weight, 1)
if G.is_directed():
G_succ = G.succ
else:
G_succ = G.adj
inf = float('inf')
d = dict((u, inf) for u in G)
d[source] = 0
pred = {source: None}
def topo_sort(relabeled):
"""Topologically sort nodes relabeled in the previous round and detect
negative cycles.
"""
# List of nodes to scan in this round. Denoted by A in Goldberg and
# Radzik's paper.
to_scan = []
# In the DFS in the loop below, neg_count records for each node the
# number of edges of negative reduced costs on the path from a DFS root
# to the node in the DFS forest. The reduced cost of an edge (u, v) is
# defined as d[u] + weight[u][v] - d[v].
#
# neg_count also doubles as the DFS visit marker array.
neg_count = {}
for u in relabeled:
# Skip visited nodes.
if u in neg_count:
continue
d_u = d[u]
# Skip nodes without out-edges of negative reduced costs.
if all(d_u + get_weight(e) >= d[v] for v, e in G_succ[u].items()):
continue
# Nonrecursive DFS that inserts nodes reachable from u via edges of
# nonpositive reduced costs into to_scan in (reverse) topological
# order.
stack = [(u, iter(G_succ[u].items()))]
in_stack = set([u])
neg_count[u] = 0
while stack:
u, it = stack[-1]
try:
v, e = next(it)
except StopIteration:
to_scan.append(u)
stack.pop()
in_stack.remove(u)
continue
t = d[u] + get_weight(e)
d_v = d[v]
if t <= d_v:
is_neg = t < d_v
d[v] = t
pred[v] = u
if v not in neg_count:
neg_count[v] = neg_count[u] + int(is_neg)
stack.append((v, iter(G_succ[v].items())))
in_stack.add(v)
elif (v in in_stack and
neg_count[u] + int(is_neg) > neg_count[v]):
# (u, v) is a back edge, and the cycle formed by the
# path v to u and (u, v) contains at least one edge of
# negative reduced cost. The cycle must be of negative
# cost.
raise nx.NetworkXUnbounded(
'Negative cost cycle detected.')
to_scan.reverse()
return to_scan
def relax(to_scan):
"""Relax out-edges of relabeled nodes.
"""
relabeled = set()
# Scan nodes in to_scan in topological order and relax incident
# out-edges. Add the relabled nodes to labeled.
for u in to_scan:
d_u = d[u]
for v, e in G_succ[u].items():
w_e = get_weight(e)
if d_u + w_e < d[v]:
d[v] = d_u + w_e
pred[v] = u
relabeled.add(v)
return relabeled
# Set of nodes relabled in the last round of scan operations. Denoted by B
# in Goldberg and Radzik's paper.
relabeled = set([source])
while relabeled:
to_scan = topo_sort(relabeled)
relabeled = relax(to_scan)
d = dict((u, d[u]) for u in pred)
return pred, d
def negative_edge_cycle(G, weight='weight'):
"""Return True if there exists a negative edge cycle anywhere in G.
Parameters
----------
G : NetworkX graph
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
Returns
-------
negative_cycle : bool
True if a negative edge cycle exists, otherwise False.
Examples
--------
>>> import networkx as nx
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> print(nx.negative_edge_cycle(G))
False
>>> G[1][2]['weight'] = -7
>>> print(nx.negative_edge_cycle(G))
True
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
This algorithm uses bellman_ford() but finds negative cycles
on any component by first adding a new node connected to
every node, and starting bellman_ford on that node. It then
removes that extra node.
"""
newnode = generate_unique_node()
G.add_edges_from([(newnode, n) for n in G])
try:
bellman_ford(G, newnode, weight)
except nx.NetworkXUnbounded:
return True
finally:
G.remove_node(newnode)
return False
def bidirectional_dijkstra(G, source, target, weight='weight'):
"""Dijkstra's algorithm for shortest paths using bidirectional search.
Parameters
----------
G : NetworkX graph
source : node
Starting node.
target : node
Ending node.
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
Returns
-------
length : number
Shortest path length.
Returns a tuple of two dictionaries keyed by node.
The first dictionary stores distance from the source.
The second stores the path from the source to that node.
Raises
------
NetworkXNoPath
If no path exists between source and target.
Examples
--------
>>> G=nx.path_graph(5)
>>> length,path=nx.bidirectional_dijkstra(G,0,4)
>>> print(length)
4
>>> print(path)
[0, 1, 2, 3, 4]
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
In practice bidirectional Dijkstra is much more than twice as fast as
ordinary Dijkstra.
Ordinary Dijkstra expands nodes in a sphere-like manner from the
source. The radius of this sphere will eventually be the length
of the shortest path. Bidirectional Dijkstra will expand nodes
from both the source and the target, making two spheres of half
this radius. Volume of the first sphere is pi*r*r while the
others are 2*pi*r/2*r/2, making up half the volume.
This algorithm is not guaranteed to work if edge weights
are negative or are floating point numbers
(overflows and roundoff errors can cause problems).
See Also
--------
shortest_path
shortest_path_length
"""
if source == target:
return (0, [source])
push = heappush
pop = heappop
# Init: Forward Backward
dists = [{}, {}] # dictionary of final distances
paths = [{source: [source]}, {target: [target]}] # dictionary of paths
fringe = [[], []] # heap of (distance, node) tuples for
# extracting next node to expand
seen = [{source: 0}, {target: 0}] # dictionary of distances to
# nodes seen
c = count()
# initialize fringe heap
push(fringe[0], (0, next(c), source))
push(fringe[1], (0, next(c), target))
# neighs for extracting correct neighbor information
if G.is_directed():
neighs = [G.successors_iter, G.predecessors_iter]
else:
neighs = [G.neighbors_iter, G.neighbors_iter]
# variables to hold shortest discovered path
#finaldist = 1e30000
finalpath = []
dir = 1
while fringe[0] and fringe[1]:
# choose direction
# dir == 0 is forward direction and dir == 1 is back
dir = 1 - dir
# extract closest to expand
(dist, _, v) = pop(fringe[dir])
if v in dists[dir]:
# Shortest path to v has already been found
continue
# update distance
dists[dir][v] = dist # equal to seen[dir][v]
if v in dists[1 - dir]:
# if we have scanned v in both directions we are done
# we have now discovered the shortest path
return (finaldist, finalpath)
for w in neighs[dir](v):
if(dir == 0): # forward
if G.is_multigraph():
minweight = min((dd.get(weight, 1)
for k, dd in G[v][w].items()))
else:
minweight = G[v][w].get(weight, 1)
vwLength = dists[dir][v] + minweight # G[v][w].get(weight,1)
else: # back, must remember to change v,w->w,v
if G.is_multigraph():
minweight = min((dd.get(weight, 1)
for k, dd in G[w][v].items()))
else:
minweight = G[w][v].get(weight, 1)
vwLength = dists[dir][v] + minweight # G[w][v].get(weight,1)
if w in dists[dir]:
if vwLength < dists[dir][w]:
raise ValueError(
"Contradictory paths found: negative weights?")
elif w not in seen[dir] or vwLength < seen[dir][w]:
# relaxing
seen[dir][w] = vwLength