-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblock_allocator.h
243 lines (209 loc) · 12.3 KB
/
block_allocator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#ifndef BLOCK_ALLOCATOR_H
#define BLOCK_ALLOCATOR_H
// MIT License
// Copyright (c) 2023 Charlie Shenton
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// Allocator based on Sebastian Aaltonen's Offset Allocator:
// https://github.com/sebbbi/OffsetAllocator/blob/main/offsetAllocator.cpp
#include <stdint.h>
#include <stdlib.h>
#define BLOCK_ALLOCATOR_SUCCESS 0
#define BLOCK_ALLOCATOR_OUT_OF_MEMORY -1
#define BLOCK_ALLOCATOR_MAX_ALLOCS 131072 // 128 * 1024, you can change this if you like
typedef struct block_allocator_block_t {
uint32_t offset; // Offset of the block in bytes
uint32_t size; // Size of this block in bytes
uint32_t bin_prev; // Previous block in a bin's linked-list of blocks, if any, or its bin index
uint32_t bin_next; // Next block in a bin's linked-list of blocks, if any
uint32_t mem_prev; // Previous block in memory, if any
uint32_t mem_next; // Next block in memory, if any
} block_allocator_block_t;
typedef struct block_allocator_t {
uint32_t top_bins; // Which of the top log2 bins are resident
uint8_t bottom_bins[32]; // Which if the bottom linear bins are resident in each top bins
uint32_t bin_lists[256]; // Start index for the linked-list of blocks in each bin
block_allocator_block_t *blocks; // Pre-allocated array of block information
uint32_t head_block; // Index of the block at the start of the memory heap
uint32_t *free_blocks; // Free list of blocks
uint32_t free_offset; // Current free list start index
} block_allocator_t;
typedef struct block_allocator_allocation_t {
uint32_t offset;
uint32_t size;
uint32_t metadata;
} block_allocator_allocation_t;
// Initialise a block allocator over size bytes of memory, returns OUT_OF_MEMORY if CPU allocation fails, success otherwise
int block_allocator_init(uint32_t size, block_allocator_t *out_allocator);
// Frees the backing memory for the allocator
void block_allocator_destroy(block_allocator_t *allocator);
// Allocates a sub-range of size bytes, returns OUT_OF_MEMORY if no such block exists larger than that size
int block_allocator_alloc(block_allocator_t *allocator, uint32_t size, block_allocator_allocation_t *out_alloc);
// Frees the byte range associated with this alloc
void block_allocator_free(block_allocator_t *allocator, block_allocator_allocation_t *alloc);
// Get the block at the start of the memory heap, useful for traversing to render heap fragmentation
void block_allocator_head(block_allocator_t *allocator, block_allocator_block_t *out_block);
// Get the next block in memory after this one, useful for traversing to render heap fragmentation.
// Returns BLOCK_ALLOCATOR_OUT_OF_MEMORY if we're at the end of the heap.
int block_allocator_next(block_allocator_t *allocator, block_allocator_block_t *block, block_allocator_block_t *out_block);
// Indicates whether a memory block is currently allocated, useful for traversing to render heap fragmentation
int block_allocator_is_used(block_allocator_block_t *block);
#ifdef BLOCK_ALLOCATOR_IMPL
#define BLOCK_ALLOCATOR_UNUSED 0xffffffff // Sentinel value used to denote the ends of linked lists
#define BLOCK_ALLOCATOR_HEAD_BITS 0xf0000000 // This could just be a single bit, but we have bits to spare
#define BLOCK_ALLOCATOR_HEAD_MASK 0x0fffffff // This is simply ~BLOCK_HEAD_BITS
uint32_t block_allocator_size_to_bin_index(uint32_t size, uint32_t *out_top, uint32_t *out_bottom) {
uint32_t leading_zeros = __builtin_clz(size);
*out_top = leading_zeros > 28 ? 0 : 28 - leading_zeros;
*out_bottom = (size >> *out_top) & 0x7;
return (*out_top << 3) | *out_bottom;
}
int block_allocator_is_used(block_allocator_block_t *block) {
return (block->bin_next == BLOCK_ALLOCATOR_UNUSED) && (block->bin_prev == BLOCK_ALLOCATOR_UNUSED);
}
int block_allocator_insert(block_allocator_t *allocator, uint32_t offset, uint32_t size, uint32_t mem_prev, uint32_t mem_next) {
if (allocator->free_offset == BLOCK_ALLOCATOR_MAX_ALLOCS) { return BLOCK_ALLOCATOR_OUT_OF_MEMORY; }
uint32_t top_index, bottom_index;
uint32_t index = block_allocator_size_to_bin_index(size, &top_index, &bottom_index);
allocator->top_bins |= (1 << top_index);
allocator->bottom_bins[top_index] |= (1 << bottom_index);
uint32_t block_index = allocator->free_blocks[allocator->free_offset];
allocator->free_offset += 1;
uint32_t head_block_index = allocator->bin_lists[index];
block_allocator_block_t block = {offset, size, BLOCK_ALLOCATOR_HEAD_BITS | index, head_block_index, mem_prev, mem_next};
allocator->blocks[block_index] = block;
if (head_block_index != BLOCK_ALLOCATOR_UNUSED) { allocator->blocks[head_block_index].bin_prev = block_index; }
if (mem_prev != BLOCK_ALLOCATOR_UNUSED) { allocator->blocks[mem_prev].mem_next = block_index; }
if (mem_next != BLOCK_ALLOCATOR_UNUSED) { allocator->blocks[mem_next].mem_prev = block_index; }
allocator->bin_lists[index] = block_index;
if (offset == 0) { allocator->head_block = block_index; }
return BLOCK_ALLOCATOR_SUCCESS;
}
void block_allocator_remove(block_allocator_t *allocator, uint32_t block_index) {
block_allocator_block_t block = allocator->blocks[block_index];
allocator->free_offset -= 1;
allocator->free_blocks[allocator->free_offset] = block_index;
int is_head = (block.bin_prev & BLOCK_ALLOCATOR_HEAD_BITS) != 0;
if (!is_head) {
allocator->blocks[block.bin_prev].bin_next = block.bin_next;
if (block.bin_next != BLOCK_ALLOCATOR_UNUSED) { allocator->blocks[block.bin_next].bin_prev = block.bin_prev; }
return;
}
uint32_t index = block.bin_prev & BLOCK_ALLOCATOR_HEAD_MASK;
uint32_t top_index = index >> 3;
uint32_t bottom_index = index & 0x7;
allocator->bin_lists[index] = block.bin_next;
if (block.bin_next != BLOCK_ALLOCATOR_UNUSED) {
allocator->blocks[block.bin_next].bin_prev = block.bin_prev;
return;
}
allocator->bottom_bins[top_index] &= ~(1 << bottom_index);
if (allocator->bottom_bins[top_index] == 0) { allocator->top_bins &= ~(1 << top_index); }
}
int block_allocator_init(uint32_t size, block_allocator_t *out_allocator) {
out_allocator->top_bins = 0;
out_allocator->free_offset = 0;
out_allocator->head_block = 0;
for (int i=0; i < 32; i++) {
out_allocator->bottom_bins[i] = 0;
}
for (int i=0; i < 256; i++) {
out_allocator->bin_lists[i] = BLOCK_ALLOCATOR_UNUSED;
}
out_allocator->blocks = (block_allocator_block_t*)malloc(sizeof(block_allocator_block_t) * BLOCK_ALLOCATOR_MAX_ALLOCS);
out_allocator->free_blocks = (uint32_t*)malloc(sizeof(uint32_t) * BLOCK_ALLOCATOR_MAX_ALLOCS);
if (out_allocator->blocks == NULL || out_allocator->free_blocks == NULL) { return BLOCK_ALLOCATOR_OUT_OF_MEMORY; }
for (int i=0; i < BLOCK_ALLOCATOR_MAX_ALLOCS; i++) {
out_allocator->free_blocks[i] = i;
}
block_allocator_insert(out_allocator, 0, size, BLOCK_ALLOCATOR_UNUSED, BLOCK_ALLOCATOR_UNUSED);
return BLOCK_ALLOCATOR_SUCCESS;
}
void block_allocator_destroy(block_allocator_t *allocator) {
free(allocator->blocks);
free(allocator->free_blocks);
}
int block_allocator_alloc(block_allocator_t *allocator, uint32_t size, block_allocator_allocation_t *out_alloc) {
if (size == 0) { return BLOCK_ALLOCATOR_OUT_OF_MEMORY; }
uint32_t top_index, bottom_index;
uint32_t index = block_allocator_size_to_bin_index(size, &top_index, &bottom_index);
uint8_t bigger_bottoms;
if (bottom_index == 7) {
bigger_bottoms = 0;
} else {
bigger_bottoms = allocator->bottom_bins[top_index] & ~((1 << (bottom_index + 1)) - 1);
}
if (bigger_bottoms != 0) {
bottom_index = __builtin_ctz(bigger_bottoms);
} else {
if (top_index == 31) { return BLOCK_ALLOCATOR_OUT_OF_MEMORY; }
uint32_t bigger_tops = allocator->top_bins & ~((1 << (top_index + 1)) - 1);
if (bigger_tops == 0) { return BLOCK_ALLOCATOR_OUT_OF_MEMORY; }
top_index = __builtin_ctz(bigger_tops);
bottom_index = __builtin_ctz(allocator->bottom_bins[top_index]);
}
index = (top_index << 3) | bottom_index;
uint32_t block_index = allocator->bin_lists[index];
block_allocator_block_t *block = &allocator->blocks[block_index];
allocator->bin_lists[index] = block->bin_next;
if (block->bin_next != BLOCK_ALLOCATOR_UNUSED) {
allocator->blocks[block->bin_next].bin_prev = BLOCK_ALLOCATOR_HEAD_BITS | index;
} else {
allocator->bottom_bins[top_index] &= ~(1 << bottom_index);
if (allocator->bottom_bins[top_index] == 0) { allocator->top_bins &= ~(1 << top_index); }
}
block->bin_prev = BLOCK_ALLOCATOR_UNUSED;
block->bin_next = BLOCK_ALLOCATOR_UNUSED;
uint32_t remaining_size = block->size - size;
if (remaining_size > 0) {
int res = block_allocator_insert(allocator, block->offset + size, remaining_size, block_index, block->mem_next);
if (res == BLOCK_ALLOCATOR_OUT_OF_MEMORY) { return res; }
}
block->size = size;
block_allocator_allocation_t alloc = {block->offset, block->size, block_index};
*out_alloc = alloc;
return BLOCK_ALLOCATOR_SUCCESS;
}
void block_allocator_free(block_allocator_t *allocator, block_allocator_allocation_t *alloc) {
if (alloc->size == 0) { return; }
block_allocator_block_t block = allocator->blocks[alloc->metadata];
allocator->free_offset -= 1;
allocator->free_blocks[allocator->free_offset] = alloc->metadata;
if (block.mem_prev != BLOCK_ALLOCATOR_UNUSED && !block_allocator_is_used(&allocator->blocks[block.mem_prev])) {
block_allocator_block_t prev_block = allocator->blocks[block.mem_prev];
block.offset = prev_block.offset;
block.size += prev_block.size;
block_allocator_remove(allocator, block.mem_prev);
block.mem_prev = prev_block.mem_prev;
}
if (block.mem_next != BLOCK_ALLOCATOR_UNUSED && !block_allocator_is_used(&allocator->blocks[block.mem_next])) {
block_allocator_block_t next_block = allocator->blocks[block.mem_next];
block.size += next_block.size;
block_allocator_remove(allocator, block.mem_next);
block.mem_next = next_block.mem_next;
}
block_allocator_insert(allocator, block.offset, block.size, block.mem_prev, block.mem_next);
}
void block_allocator_head(block_allocator_t *allocator, block_allocator_block_t *out_block) {
*out_block = allocator->blocks[allocator->head_block];
}
int block_allocator_next(block_allocator_t *allocator, block_allocator_block_t *block, block_allocator_block_t *out_block) {
if (block->mem_next == BLOCK_ALLOCATOR_UNUSED) { return BLOCK_ALLOCATOR_OUT_OF_MEMORY; }
*out_block = allocator->blocks[block->mem_next];
return BLOCK_ALLOCATOR_SUCCESS;
}
#endif // BLOCK_ALLOCATOR_IMPL
#endif // BLOCK_ALLOCATOR_H