-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_autoencoder.py
130 lines (105 loc) · 4.25 KB
/
train_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
######
### Trains autoencoder on Depmap data.
######
# Imports packages
import os
import argparse
import math
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data_utils
import numpy as np
import pandas as pd
from torchsummary import summary
from datetime import timedelta
# Imports model classes
import ae_classes as AE
# Makes parser for user input
def make_arg_parser():
parser = argparse.ArgumentParser(prog='autoencoder_interface.py',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-i", "--input_file",
default=argparse.SUPPRESS,
type=str,
required=True,
help="Path to training data [required]")
parser.add_argument("-o", "--output_folder",
default=argparse.SUPPRESS,
type=str,
required=True,
help="Path to output folder [required]")
parser.add_argument("-e", "--epochs",
default=10,
type=int,
help="Number of training epochs [optional]")
parser.add_argument("-l", "--latent_dim",
default=3,
type=int,
help="Number of latent dimensions for autoencoder [optional]")
return parser
# Trains Depmap on CPUs with Adam optimizer and MSE loss
def train_ae(train, n_features, epochs, latent_dim, output_folder):
# Prints start time
start_time = time.time()
print(output_folder)
with open(os.path.join(output_folder, "time.txt"), "w") as f:
print("Start time: " + str(start_time), file = f)
# Converts numpy array to tensor
train_loader = torch.utils.data.DataLoader(torch.from_numpy(train), batch_size=32, shuffle=True)
# Sets up optimizer
device = torch.device("cpu")
model = AE.ConvAE(input_shape=n_features, latent_dim=latent_dim).to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
criterion = nn.MSELoss()
# Trains for the given number of epochs
all_loss = []
for epoch in range(epochs):
loss = 0
for batch in train_loader:
# Reshapes mini-batch to size [N, 1, n_features]
batch = batch.view(-1, n_features).to(device).float()
# Resets gradients
optimizer.zero_grad()
# Computes reconstructions, loss, and gradients
outputs = model(batch)
train_loss = criterion(outputs, batch)
train_loss.backward()
# Updates parameters and appends loss
optimizer.step()
loss += train_loss.item()
# Computes and prints the average epoch training loss
loss = loss / len(train_loader)
all_loss.append(loss)
print("epoch : {}/{}, loss = {:.6f}".format(epoch + 1, epochs, loss))
# Writes epoch loss to file
np.savetxt(os.path.join(output_folder, "autoencoder_mse_loss.txt"), all_loss)
# Prints end time and time taken
end_time = time.time()
with open(os.path.join(output_folder, "time.txt"), "w") as f:
print("End time: " + str(end_time), file = f)
print("Time taken: " + str(timedelta(seconds = end_time - start_time)), file = f)
# Returns trained model
return model
# Main script
def train(input_file, output_folder, epochs, latent_dim):
# Sets precision for printing
torch.set_printoptions(precision = 100)
# Reads in and formats data
data = pd.read_csv(input_file, sep = "\t", index_col = 0)
nrow = data.shape[0]
ncol = data.shape[1]
train = np.asarray(data)
n_features = train.shape[1]
# Sets seed for reproducibility
seed = 5001
# Trains autoencoder and saves model
model_file = os.path.join(output_folder, "autoencoder_model.pt")
model = train_ae(train, n_features, epochs, latent_dim, output_folder)
torch.save(model.state_dict(), model_file)
if __name__ == '__main__':
parser = make_arg_parser()
args = parser.parse_args()
args = vars(args)
train(args['input_file'], args['output_folder'], args['epochs'], args['latent_dim'])