深度优先搜索算法(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法。沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点 v 的所在边都己被探寻过,搜索将回溯到发现节点 v 的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。属于盲目搜索。
深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。
因发明「深度优先搜索算法」,约翰 · 霍普克洛夫特与罗伯特 · 塔扬在 1986 年共同获得计算机领域的最高奖:图灵奖。
截止目前(2020-02-21),深度优先遍历在 LeetCode 中的题目是 129 道。在 LeetCode 中的题型绝对是超级大户了。而对于树的题目,我们基本上都可以使用 DFS 来解决,甚至我们可以基于 DFS 来做广度优先遍历。并不一定说 DFS 不可以做 BFS(广度优先遍历)的事情。而且由于 DFS 通常我们可以基于递归去做,因此算法会更简洁。 在对性能有很高邀请的场合,我建议你使用迭代,否则尽量使用递归,不仅写起来简单快速,还不容易出错。
另外深度优先遍历可以结合回溯专题来联系,建议将这两个专题放到一起来学习。
DFS 的概念来自于图论,但是搜索中 DFS 和图论中 DFS 还是有一些区别,搜索中 DFS 一般指的是通过递归函数实现暴力枚举。
- 首先将根节点放入stack中。
- 从stack中取出第一个节点,并检验它是否为目标。如果找到目标,则结束搜寻并回传结果。否则将它某一个尚未检验过的直接子节点加入stack中。
- 重复步骤 2。
- 如果不存在未检测过的直接子节点。将上一级节点加入stack中。 重复步骤 2。
- 重复步骤 4。
- 若stack为空,表示整张图都检查过了——亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”。
这里的 stack 可以理解为自实现的栈,也可以理解为调用栈
const visited = {}
function dfs(i) {
if (满足特定条件){
// 返回结果 or 退出搜索空间
}
visited[i] = true // 将当前状态标为已搜索
for (根据i能到达的下个状态j) {
if (!visited[j]) { // 如果状态j没有被搜索过
dfs(j)
}
}
}
这是我近期总结的几个 DFS 题目,后续会持续更新~
-
200. 岛屿数量 中等
-
695. 岛屿的最大面积 中等