-
Notifications
You must be signed in to change notification settings - Fork 0
/
residenceTime.py
318 lines (227 loc) · 6.94 KB
/
residenceTime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# import modules
import numpy as np
import MDAnalysis as md
import time
##########################
##########################
def frameInVolManySel ( mdUniverse, volume, selectionList ):
# 1.- pick selections in selectionList
# -------------------------------------
#'''''
np.disp('start sorting')
tstart=time.time()
#'''''
[ lineInSelection , inSelection ]=selInVol( mdUniverse, volume, selectionList )
#'''''
tend=time.time()
dt=tend-tstart
np.disp(dt)
np.disp('finish sorting')
#'''''
# 2.- matrix with index and frame ranges
# ----------------------------------------
outM=np.zeros((0,4), dtype=int)
for lineSel,sel in zip(lineInSelection, inSelection):
#'''''
tstart=time.time()
#'''''
currFrame=frameInVol( mdUniverse , volume, sel )
[iFrame,jFrame]=np.shape(currFrame)
if iFrame > 0 :
colIndex=np.ones((iFrame,1), dtype=int)
colIndex=colIndex*lineSel
currOut=np.hstack((colIndex,currFrame))
outM=np.vstack((outM,currOut))
#'''''
tend=time.time()
dt=tend-tstart
np.disp(dt)
#'''''
# 3.- add volume column
# ----------------------
[iOut,jOut]=np.shape(outM)
if iOut == 0 :
outM=np.ones((1,3))*-1
return outM
##########################
##########################
def selInVol ( mdUniverse, volume, selectionList ):
#
# selections in volume
#
# INPUT
# =======
# - mdUniverse : MDanalysis universe
# - volume : one volume line
# - selectionList : list containing all selection lines
#
#
# OUTPUT
# ========
# - outTuple : tuple that contains outSelLine and outSel
# outSelLine : (1D array, int) containing number lines from selFile that cross volume
# outSel : (list) short version of selFile, contains only lines that cross volume
#
#>>>>>>>
# 1.- order selection data
# -------------------------
outSel=[]
outSelLine=np.zeros((0), dtype=int)
countLine=0
# 2.- particles in volume
# ------------------------
# run over selections
for sel in selectionList :
strSel='bynum '+sel
currSel=mdUniverse.select_atoms(strSel)
for ts in mdUniverse.trajectory:
# particle selection in mdUniverse
currSel=mdUniverse.select_atoms(strSel)
# center of mass
[x,y,z]=currSel.center_of_mass()
# condition
condVol = eval(volume)
# add on-off into out array
if ( condVol == 1) :
outSel.append(sel)
outSelLine=np.hstack( (outSelLine , countLine) )
break
countLine+=1
outTuple=(outSelLine,outSel)
return outTuple
##########
def frameInVol ( mdUniverse, volume, selection ):
#
# frame ranges of selection occupying volume
#
# INPUT
# =======
# - mdUniverse : MDanalysis universe
# - volume : one volume
# - selection : one selection
#
#
# OUTPUT
# ========
# - OnOffFrame : nx3 array with [number of frames, start frame, end frame] (integers)
#
OnOffArray=inOutVol( mdUniverse, volume, selection )
OnOffFrame=bool2frame( OnOffArray )
#>>>>>>>>>>>>>>
# NEW: add column with number of frames
# needed for split trajectories and regenerate bool
nFrames=len(mdUniverse.trajectory)
[iFrameRange,jFrameRange]=np.shape(OnOffFrame)
colFrame=np.ones((iFrameRange,1), dtype=int)
colFrame=colFrame*nFrames
OnOffFrame=np.hstack((colFrame,OnOffFrame))
#>>>>>>>>>>>>>>>>
return OnOffFrame
def inOutVol ( mdUniverse, volume, selection ):
#
# 1D On-Off array
# +1: selection is inside volume; -1 : selection is outside volume
#
# INPUT
# =======
# - mdUniverse : MDanalysis universe
# - volume :
# - selection :
#
#
# OUTPUT
# ========
# - OnOffArray : array with on-off values (integers)
#
# number of frames
nFrames=len(mdUniverse.trajectory)
# particle selection
strSel='( bynum ' + selection + ' )'
# out array for bool values
OnOffArray=np.ones((nFrames), dtype=int)
# iterate over trajectory
counter=0;
for ts in mdUniverse.trajectory:
# particle selection in mdUniverse
currSel=mdUniverse.select_atoms(strSel)
# center of mass
[x,y,z]=currSel.center_of_mass()
# condition
condVol = eval(volume)
# add on-off into out array
if ( condVol == 0) :
OnOffArray[counter]=-1
# clean
currSel=[]
counter=counter+1
# out
return OnOffArray
def bool2frame( inOutVol ):
#
# reshapes positive values from 1D array to frame ranges
#
# INPUT
# =======
# - inOutVol : 1D array of positive-negative integers
#
# OUTPUT
# ========
# - outFrame : 2D array with start and end frames (integers)
#
# add values
OnOffSum=sumSignedInt(inOutVol)
# start and end indexes
rangeFrame=np.cumsum(np.absolute(OnOffSum))
startFrame=np.insert(rangeFrame,0,0)
startFrame=startFrame[0:-1]
endFrame=rangeFrame-1
# reorganize output values
outFrame=np.zeros((0,2), dtype=int)
iCount=0
for oneVal in OnOffSum :
if oneVal > 0 :
oneRange=np.zeros((1,2), dtype=int)
oneRange[0,0]=startFrame[iCount]
oneRange[0,1]=endFrame[iCount]
outFrame=np.vstack((outFrame,oneRange))
iCount+=1
# out
return outFrame
def sumSignedInt ( OnOffArray ):
#
# add values of the same sign
#
# INPUT
# =======
# - OnOffArray: 1D array signed integers
#
# OUTPUT
# ========
# - OnOffSum: 1D array of added integers
#
# length of array
lenOnOffArray=len(OnOffArray)
if ( lenOnOffArray > 1 ):
# proceed for > 1 item
# ---------------------
# initialize values
currSum=OnOffArray[0]
prevBool=(currSum>0)
OnOffSum=np.zeros((0), dtype=int)
# addition loop
for currVal in OnOffArray[1:]:
currBool=(currVal>0)
if ( currBool == prevBool ):
currSum=currSum+currVal
else:
OnOffSum=np.append(OnOffSum,currSum)
currSum=currVal
prevBool=currBool
# flush last sum
OnOffSum=np.append(OnOffSum,currSum)
else :
# array has only one item, just copy
# -----------------------------------
OnOffSum=OnOffArray
# out
return OnOffSum