Skip to content

Latest commit

 

History

History
75 lines (56 loc) · 2.31 KB

README.md

File metadata and controls

75 lines (56 loc) · 2.31 KB

chesspy

Detect chess pieces on chesstempo boards using opencv in python.

Usage

>python detect.py -h
usage: detect.py [-h] [-color {w,b}] [-t TIME] [-v] [--show_move]
                 [--hide_move]
                 [--castle {KQkq,Kkq,Qkq,kq,KQk,Kk,Qk,k,KQq,Kq,Qq,q,K,Q,KQ,-}]
                 file

positional arguments:
  file                  png image filename to parse

optional arguments:
  -h, --help            show this help message and exit
  -color {w,b}          color to move, "w" or "b" (color is autodetected if
                        omitted)
  -t TIME, --time TIME  sunfish thinking time, default=5
  -v, --verbose         increase output verbosity and saving of status images
  --show_move           show best move window (default)
  --hide_move           hide best move window
  --castle {KQkq,Kkq,Qkq,kq,KQk,Kk,Qk,k,KQq,Kq,Qq,q,K,Q,KQ,-}
                        castling possibilities (default: -)

Or use the provided screenshot.py script to grab a screenshot and immediately start analyzing it:

python screenshot.py

Example

Take the screenshot Example screenshot

After template matching the detected board is passed to sunfish, which calculates the optimal move and prints it in the original picture:

c:\dev\chesspy>python detect.py samples\stellung3.png
Parsing file samples\stellung3.png None
FEN 1rb1nrk1/2q2p1p/p1p3p1/2QNP3/P7/6P1/1PP2P1P/3RR1K1
Detected board: (b)



 . k . r r . . .
 p . p . . p p .
 . p . . . . . .
 . . . . . . . p
 . . . p n q . .
 . P . . . P . P
 P . P . . Q . .
 . K R N . B R .


Suggested move (score): c6d5 1181

c:\dev\chesspy>

Example screenshot

Server mode

Using the flask-server fserver.py, a webservice will listen at the configured port. Images can be transferred via POST request, which will be parsed, analyzed and the result will be printed back to the client.

Example POST call:

curl -F "file=@samples/stellung8-1.png" localhost:5000/api/test

Dependencies

Using http://opencv.org/ to detect the pieces and Sunfish python chess engine to analyse the board and predict the next move.

Python version is 2.7.

Flask is used to provide upload capabilities via HTTP.