-
Notifications
You must be signed in to change notification settings - Fork 52
/
run_nerf_helpers.py
353 lines (287 loc) · 13.6 KB
/
run_nerf_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import torch
torch.autograd.set_detect_anomaly(True)
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import kilonerf_cuda
import math
# Misc
img2mse = lambda x, y : torch.mean((x - y) ** 2)
mse2psnr = lambda x : -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
# Positional encoding (section 5.1)
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x : x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
else:
freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, i=0):
if i == -1:
return nn.Identity(), 3
embed_kwargs = {
'include_input' : True,
'input_dims' : 3,
'max_freq_log2' : multires-1,
'num_freqs' : multires,
'log_sampling' : True,
'periodic_fns' : [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
embed = lambda x, eo=embedder_obj : eo.embed(x)
return embed, embedder_obj.out_dim
class DenseLayer(nn.Linear):
def __init__(self, in_dim: int, out_dim: int, activation: str = "relu", *args, **kwargs) -> None:
self.activation = activation
super().__init__(in_dim, out_dim, *args, **kwargs)
def reset_parameters(self) -> None:
torch.nn.init.xavier_uniform_(self.weight, gain=torch.nn.init.calculate_gain(self.activation))
if self.bias is not None:
torch.nn.init.zeros_(self.bias)
# Model
class NeRF(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, skips=[4], use_viewdirs=False, direction_layer_size=None, use_initialization_fix=False):
"""
"""
super(NeRF, self).__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_views
self.skips = skips
self.use_viewdirs = use_viewdirs
self.use_initialization_fix = use_initialization_fix
if direction_layer_size is None:
direction_layer_size = W//2
def linear_layer(in_features, out_features, activation):
if self.use_initialization_fix:
return DenseLayer(in_features, out_features, activation=activation)
else:
return nn.Linear(in_features, out_features)
self.pts_linears = nn.ModuleList(
[linear_layer(input_ch, W, activation="relu")] + [linear_layer(W, W, activation="relu") if i not in self.skips else linear_layer(W + input_ch, W, activation="relu") for i in range(D-1)])
### Implementation according to the official code release (https://github.com/bmild/nerf/blob/master/run_nerf_helpers.py#L104-L105)
self.views_linears = nn.ModuleList([linear_layer(input_ch_views + W, direction_layer_size, activation="relu")])
### Implementation according to the paper
# self.views_linears = nn.ModuleList(
# [nn.Linear(input_ch_views + W, W//2)] + [nn.Linear(W//2, W//2) for i in range(D//2)])
if use_viewdirs:
self.feature_linear = linear_layer(W, W, activation="linear")
self.alpha_linear = linear_layer(W, 1, activation="linear")
self.rgb_linear = linear_layer(direction_layer_size, 3, activation="linear")
else:
self.output_linear = linear_layer(W, output_ch, activation="linear")
def forward(self, x):
input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
h = input_pts
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h)
h = F.relu(h)
if i in self.skips:
h = torch.cat([input_pts, h], -1)
if self.use_viewdirs:
alpha = self.alpha_linear(h)
feature = self.feature_linear(h)
h = torch.cat([feature, input_views], -1)
for i, l in enumerate(self.views_linears):
h = self.views_linears[i](h)
h = F.relu(h)
rgb = self.rgb_linear(h)
outputs = torch.cat([rgb, alpha], -1)
else:
outputs = self.output_linear(h)
return outputs
def load_weights_from_keras(self, weights):
assert self.use_viewdirs, "Not implemented if use_viewdirs=False"
# Load pts_linears
for i in range(self.D):
idx_pts_linears = 2 * i
self.pts_linears[i].weight.data = torch.from_numpy(np.transpose(weights[idx_pts_linears]))
self.pts_linears[i].bias.data = torch.from_numpy(np.transpose(weights[idx_pts_linears+1]))
# Load feature_linear
idx_feature_linear = 2 * self.D
self.feature_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_feature_linear]))
self.feature_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_feature_linear+1]))
# Load views_linears
idx_views_linears = 2 * self.D + 2
self.views_linears[0].weight.data = torch.from_numpy(np.transpose(weights[idx_views_linears]))
self.views_linears[0].bias.data = torch.from_numpy(np.transpose(weights[idx_views_linears+1]))
# Load rgb_linear
idx_rbg_linear = 2 * self.D + 4
self.rgb_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear]))
self.rgb_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear+1]))
# Load alpha_linear
idx_alpha_linear = 2 * self.D + 6
self.alpha_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear]))
self.alpha_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear+1]))
class CoarseAndFine(nn.Module):
def __init__(self, model_coarse, model_fine) :
super(CoarseAndFine, self).__init__()
self.model_coarse = model_coarse
self.model_fine = model_fine
def replace_transparency_by_background_color(acc_map, background_color=None):
res = 1. - acc_map[...,None]
if background_color is not None:
res = res * background_color
return res
# Ray helpers
#def get_rays(H, W, focal, c2w):
def get_rays(intrinsics, c2w, expand_origin=True):
root_num_blocks = 64 # => 4096 blocks
root_num_threads = 16 # => 256 threads per block
rays_d = kilonerf_cuda.get_rays_d(intrinsics.H, intrinsics.W, intrinsics.cx, intrinsics.cy, intrinsics.fx, intrinsics.fy, c2w[:3, :3].contiguous(), root_num_blocks, root_num_threads)
'''
i, j = torch.meshgrid(torch.linspace(0, W-1, W), torch.linspace(0, H-1, H)) # pytorch's meshgrid has indexing='ij'
i = i.t()
j = j.t()
dirs = torch.stack([(i - intrinsics.cx) / intrinsics.fx, -(j - intrinsics.cy) / intrinsics.fy, -torch.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
'''
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[:3,-1].expand(rays_d.shape)
if expand_origin:
rays_o = rays_o.expand(rays_d.shape)
else:
rays_o = rays_o.contiguous()
return rays_o, rays_d
#def get_rays_np(H, W, focal, c2w):
def get_rays_np(intrinsics, c2w):
W, H = intrinsics.W, intrinsics.H
i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
dirs = np.stack([(i - intrinsics.cx) / intrinsics.fx, -(j - intrinsics.cy) / intrinsics.fy, -np.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d))
return rays_o, rays_d
def ndc_rays(H, W, focal, near, rays_o, rays_d):
# Shift ray origins to near plane
t = -(near + rays_o[...,2]) / rays_d[...,2]
rays_o = rays_o + t[...,None] * rays_d
# Projection
o0 = -1./(W/(2.*focal)) * rays_o[...,0] / rays_o[...,2]
o1 = -1./(H/(2.*focal)) * rays_o[...,1] / rays_o[...,2]
o2 = 1. + 2. * near / rays_o[...,2]
d0 = -1./(W/(2.*focal)) * (rays_d[...,0]/rays_d[...,2] - rays_o[...,0]/rays_o[...,2])
d1 = -1./(H/(2.*focal)) * (rays_d[...,1]/rays_d[...,2] - rays_o[...,1]/rays_o[...,2])
d2 = -2. * near / rays_o[...,2]
rays_o = torch.stack([o0,o1,o2], -1)
rays_d = torch.stack([d0,d1,d2], -1)
return rays_o, rays_d
# Hierarchical sampling (section 5.2)
def sample_pdf(bins, weights, N_samples, det=False, pytest=False):
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[...,:1]), cdf], -1) # (batch, len(bins))
# Take uniform samples
if det:
u = torch.linspace(0., 1., steps=N_samples)
u = u.expand(list(cdf.shape[:-1]) + [N_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [N_samples])
# Pytest, overwrite u with numpy's fixed random numbers
if pytest:
np.random.seed(0)
new_shape = list(cdf.shape[:-1]) + [N_samples]
if det:
u = np.linspace(0., 1., N_samples)
u = np.broadcast_to(u, new_shape)
else:
u = np.random.rand(*new_shape)
u = torch.Tensor(u)
# Invert CDF
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.max(torch.zeros_like(inds-1), inds-1)
above = torch.min((cdf.shape[-1]-1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (batch, N_samples, 2)
# cdf_g = tf.gather(cdf, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
# bins_g = tf.gather(bins, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[...,1]-cdf_g[...,0])
denom = torch.where(denom<1e-5, torch.ones_like(denom), denom)
t = (u-cdf_g[...,0])/denom
samples = bins_g[...,0] + t * (bins_g[...,1]-bins_g[...,0])
return samples
class ChainEmbeddingAndModel(nn.Module):
def __init__(self, model, embed_fn, embeddirs_fn):
super(ChainEmbeddingAndModel, self).__init__()
self.model = model
self.embed_fn = embed_fn
self.embeddirs_fn = embeddirs_fn
def forward(self, points_and_dirs):
embedded_points = self.embed_fn(points_and_dirs[:, :3])
if self.embeddirs_fn is not None:
embedded_dirs = self.embeddirs_fn(points_and_dirs[:, 3:])
embedded_points_and_dirs = torch.cat([embedded_points, embedded_dirs], -1)
return self.model(embedded_points_and_dirs)
else:
return self.model(embedded_points)
def lookat(look_from, look_to, tmp = np.asarray([0., 0., 1.])):
forward = look_from - look_to
forward = forward / np.linalg.norm(forward)
right = np.cross(tmp, forward)
right = right / np.linalg.norm(right) # TODO: handle np.linalg.norm(right) == 0
up = np.cross(forward, right)
c2w_T = np.zeros((4,4))
c2w_T[0,0:3] = right
c2w_T[1,0:3] = up
c2w_T[2,0:3] = forward
c2w_T[3,0:3] = look_from
c2w_T[3,3] = 1
return c2w_T.T
class OrbitCamera:
def __init__(self, center, radius, inclination, azimuth, device):
self.center = center
self.radius = radius
self.inclination = inclination
self.azimuth = azimuth
self.device = device
self.compute_c2w()
def zoom(self, delta):
self.radius += delta
self.compute_c2w()
def pan(self, delta_x, delta_y):
c2w_T = self.c2w.cpu().numpy().T
right = c2w_T[0,0:3]
up = c2w_T[1,0:3]
self.center += delta_x * right
self.center += delta_y * up
self.compute_c2w()
def rotate(self, delta_x, delta_y):
self.azimuth += delta_x
self.inclination += delta_y
eps = 0.001
self.inclination = min(max(eps, self.inclination), math.pi - eps)
self.compute_c2w()
def compute_c2w(self):
offset = np.asarray([self.radius * math.cos(self.azimuth) * math.sin(self.inclination),
self.radius * math.sin(self.azimuth) * math.sin(self.inclination),
self.radius * math.cos(self.inclination)])
look_from = self.center + offset
look_to = self.center
self.c2w = torch.tensor(lookat(look_from, look_to), dtype=torch.float, device=self.device)