-
Notifications
You must be signed in to change notification settings - Fork 0
/
jense_2023_cmb_camb_neff.yaml
167 lines (156 loc) · 3.95 KB
/
jense_2023_cmb_camb_neff.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
network_name: jense_2023_camb_neff
path: jense_2023_camb_neff
emulated_code:
name: camb
version: "1.5.2"
inputs: [ ombh2, omch2, As, ns, H0, tau, nnu ]
extra_args:
lens_potential_accuracy: 8
kmax: 10.0
k_per_logint: 130
lens_margin: 2050
AccuracyBoost: 1.0
lAccuracyBoost: 1.2
lSampleBoost: 1.0
DoLateRadTruncation: false
min_l_logl_sampling: 6000
recombination_model: CosmoRec
samples:
Ntraining: 120000
parameters:
ombh2: [0.015,0.030]
omch2: [0.09,0.15]
logA: [2.5,3.5]
tau: [0.02, 0.20]
ns: [0.85, 1.05]
h: [0.4,1.0]
H0: "lambda h: h * 100.0"
As: "lambda logA: 1.e-10 * np.exp(logA)"
# derived parameters
thetastar:
sigma8:
YHe:
zrei:
taurend:
zstar:
rstar:
zdrag:
rdrag:
N_eff:
nnu: [1.0,5.0]
networks:
- quantity: "derived"
type: NN
n_traits:
n_hidden: [ 512, 512, 512, 512 ]
training:
validation_split: 0.1
learning_rates: [ 1.e-2, 1.e-3, 1.e-4, 1.e-5, 1.e-6, 1.e-7 ]
batch_sizes: [ 1000, 2000, 5000, 10000, 20000, 50000 ]
patience_values: 100
max_epochs: 1000
- quantity: "Cl/tt"
type: NN
log: True
modes:
label: l
range: [2,10000]
n_traits:
n_hidden: [ 512, 512, 512, 512 ]
training:
validation_split: 0.1
learning_rates: [ 1.e-2, 1.e-3, 1.e-4, 1.e-5, 1.e-6, 1.e-7 ]
batch_sizes: [ 1000, 2000, 5000, 10000, 20000, 50000 ]
gradient_accumulation_steps: [ 1, 1, 1, 1, 1, 1 ]
patience_values: [ 100, 100, 100, 100, 100, 100 ]
max_epochs: [ 1000, 1000, 1000, 1000, 1000, 1000 ]
- quantity: "Cl/te"
type: PCAplusNN
modes:
label: l
range: [2,10000]
p_traits:
n_pcas: 512
n_batches: 10
n_traits:
n_hidden: [ 512, 512, 512, 512 ]
training:
validation_split: 0.1
learning_rates: [ 1.e-2, 1.e-3, 1.e-4, 1.e-5, 1.e-6, 1.e-7 ]
batch_sizes: [ 1000, 2000, 5000, 10000, 20000, 50000 ]
patience_values: 100
max_epochs: 1000
- quantity: "Cl/ee"
type: NN
log: True
modes:
label: l
range: [2,10000]
n_traits:
n_hidden: [ 512, 512, 512, 512 ]
training:
validation_split: 0.1
learning_rates: [ 1.e-2, 1.e-3, 1.e-4, 1.e-5, 1.e-6, 1.e-7 ]
batch_sizes: [ 1000, 2000, 5000, 10000, 20000, 50000 ]
patience_values: 100
max_epochs: 1000
- quantity: "Cl/bb"
type: NN
log: True
modes:
label: l
range: [2,10000]
n_traits:
n_hidden: [ 512, 512, 512, 512 ]
training:
validation_split: 0.1
learning_rates: [ 1.e-2, 1.e-3, 1.e-4, 1.e-5, 1.e-6, 1.e-7 ]
batch_sizes: [ 1000, 2000, 5000, 10000, 20000, 50000 ]
patience_values: 100
max_epochs: 1000
- quantity: "Cl/pp"
inputs: [ ombh2, omch2, logA, ns, h, nnu ]
type: PCAplusNN
log: True
modes:
label: l
range: [2,10000]
p_traits:
n_pcas: 64
n_batches: 10
n_traits:
n_hidden: [ 512, 512, 512, 512 ]
training:
validation_split: 0.1
learning_rates: [ 1.e-2, 1.e-3, 1.e-4, 1.e-5, 1.e-6, 1.e-7 ]
batch_sizes: [ 1000, 2000, 5000, 10000, 20000, 50000 ]
patience_values: 100
max_epochs: 1000
- quantity: "Hubble"
type: NN
log: True
modes:
label: z
range: [0,20]
n_traits:
n_hidden: [ 512, 512, 512, 512 ]
training:
validation_split: 0.1
learning_rates: [ 1.e-2, 1.e-3, 1.e-4, 1.e-5, 1.e-6, 1.e-7 ]
batch_sizes: [ 1000, 2000, 5000, 10000, 20000, 50000 ]
patience_values: 100
max_epochs: 1000
- quantity: "angular_diameter_distance"
type: NN
log: True
modes:
label: z
range: [0,20]
n_traits:
n_hidden: [ 512, 512, 512, 512 ]
training:
validation_split: 0.1
learning_rates: [ 1.e-2, 1.e-3, 1.e-4, 1.e-5, 1.e-6, 1.e-7 ]
batch_sizes: [ 1000, 2000, 5000, 10000, 20000, 50000 ]
patience_values: 100
max_epochs: 1000