forked from HewlettPackard/mcpat
-
Notifications
You must be signed in to change notification settings - Fork 1
/
iocontrollers.cc
513 lines (447 loc) · 22.5 KB
/
iocontrollers.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/*****************************************************************************
* McPAT
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
*
***************************************************************************/
#include "io.h"
#include "parameter.h"
#include "const.h"
#include "logic.h"
#include "basic_circuit.h"
#include <iostream>
#include <algorithm>
#include "XML_Parse.h"
#include <string>
#include <cmath>
#include <assert.h>
#include "iocontrollers.h"
#include "basic_components.h"
/*
SUN Niagara 2 I/O power analysis:
total signal bits: 711
Total FBDIMM bits: (14+10)*2*8= 384
PCIe bits: (8 + 8)*2 = 32
10Gb NIC: (4*2+4*2)*2 = 32
Debug I/Os: 168
Other I/Os: 711- 32-32 - 384 - 168 = 95
According to "Implementation of an 8-Core, 64-Thread, Power-Efficient SPARC Server on a Chip"
90% of I/Os are SerDers (the calucaltion is 384+64/(711-168)=83% about the same as the 90% reported in the paper)
--> around 80Pins are common I/Os.
Common I/Os consumes 71mW/Gb/s according to Cadence ChipEstimate @65nm
Niagara 2 I/O clock is 1/4 of core clock. --> 87pin (<--((711-168)*17%)) * 71mW/Gb/s *0.25*1.4Ghz = 2.17W
Total dynamic power of FBDIMM, NIC, PCIe = 84*0.132 + 84*0.049*0.132 = 11.14 - 2.17 = 8.98
Further, if assuming I/O logic power is about 50% of I/Os then Total energy of FBDIMM, NIC, PCIe = 11.14 - 2.17*1.5 = 7.89
*/
/*
* A bug in Cadence ChipEstimator: After update the clock rate in the clock tab, a user
* need to re-select the IP clock (the same clk) and then click Estimate. if not reselect
* the new clock rate may not be propogate into the IPs.
*
*/
NIUController::NIUController(ParseXML *XML_interface,InputParameter* interface_ip_)
:XML(XML_interface),
interface_ip(*interface_ip_)
{
double frontend_area, phy_area, mac_area, SerDer_area;
double frontend_dyn, mac_dyn, SerDer_dyn;
double frontend_gates, mac_gates, SerDer_gates = 0.;
double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
double NMOS_sizing, PMOS_sizing;
set_niu_param();
local_result = init_interface(&interface_ip);
if (niup.type == 0) //high performance NIU
{
//Area estimation based on average of die photo from Niagara 2 and Cadence ChipEstimate using 65nm.
mac_area = (1.53 + 0.3)/2 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
//Area estimation based on average of die photo from Niagara 2, ISSCC "An 800mW 10Gb Ethernet Transceiver in 0.13μm CMOS"
//and"A 1.2-V-Only 900-mW 10 Gb Ethernet Transceiver and XAUI Interface With Robust VCO Tuning Technique" Frontend is PCS
frontend_area = (9.8 + (6 + 18)*65/130*65/130)/3 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
//Area estimation based on average of die photo from Niagara 2 and Cadence ChipEstimate hard IP @65nm.
//SerDer is very hard to scale
SerDer_area = (1.39 + 0.36) * (interface_ip.F_sz_um/0.065);//* (interface_ip.F_sz_um/0.065);
phy_area = frontend_area + SerDer_area;
//total area
area.set_area((mac_area + frontend_area + SerDer_area)*1e6);
//Power
//Cadence ChipEstimate using 65nm (mac, front_end are all energy. E=P*T = P/F = 1.37/1Ghz = 1.37e-9);
mac_dyn = 2.19e-9*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);//niup.clockRate; //2.19W@1GHz fully active according to Cadence ChipEstimate @65nm
//Cadence ChipEstimate using 65nm soft IP;
frontend_dyn = 0.27e-9*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);//niup.clockRate;
//according to "A 100mW 9.6Gb/s Transceiver in 90nm CMOS..." ISSCC 2006
//SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm
SerDer_dyn = 0.01*10*sqrt(interface_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;
SerDer_dyn /= niup.clockRate;//covert to energy per clock cycle of whole NIU
//Cadence ChipEstimate using 65nm
mac_gates = 111700;
frontend_gates = 320000;
SerDer_gates = 200000;
NMOS_sizing = 5*g_tp.min_w_nmos_;
PMOS_sizing = 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
}
else
{//Low power implementations are mostly from Cadence ChipEstimator; Ignore the multiple IP effect
// ---When there are multiple IP (same kind or not) selected, Cadence ChipEstimator results are not
// a simple summation of all IPs. Ignore this effect
mac_area = 0.24 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
frontend_area = 0.1 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);//Frontend is the PCS layer
SerDer_area = 0.35 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
//Compare 130um implementation in "A 1.2-V-Only 900-mW 10 Gb Ethernet Transceiver and XAUI Interface With Robust VCO Tuning Technique"
//and the ChipEstimator XAUI PHY hard IP, confirm that even PHY can scale perfectly with the technology
//total area
area.set_area((mac_area + frontend_area + SerDer_area)*1e6);
//Power
//Cadence ChipEstimate using 65nm (mac, front_end are all energy. E=P*T = P/F = 1.37/1Ghz = 1.37e-9);
mac_dyn = 1.257e-9*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);//niup.clockRate; //2.19W@1GHz fully active according to Cadence ChipEstimate @65nm
//Cadence ChipEstimate using 65nm soft IP;
frontend_dyn = 0.6e-9*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);//niup.clockRate;
//SerDer_dyn is power not energy, scaling from 216mw/10Gb/s @130nm
SerDer_dyn = 0.0216*10*(interface_ip.F_sz_um/0.13)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;
SerDer_dyn /= niup.clockRate;//covert to energy per clock cycle of whole NIU
mac_gates = 111700;
frontend_gates = 52000;
SerDer_gates = 199260;
NMOS_sizing = g_tp.min_w_nmos_;
PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
}
power_t.readOp.dynamic = mac_dyn + frontend_dyn + SerDer_dyn;
power_t.readOp.leakage = (mac_gates + frontend_gates + frontend_gates)*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device);
double pg_reduction = power_gating_leakage_reduction(false);
power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction;
power_t.readOp.power_gated_leakage = power_t.readOp.leakage * pg_reduction;
power_t.readOp.power_gated_with_long_channel_leakage = power_t.readOp.power_gated_leakage * long_channel_device_reduction;
power_t.readOp.gate_leakage = (mac_gates + frontend_gates + frontend_gates)*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
}
void NIUController::computeEnergy(bool is_tdp)
{
if (is_tdp)
{
power = power_t;
power.readOp.dynamic *= niup.duty_cycle;
}
else
{
rt_power = power_t;
rt_power.readOp.dynamic *= niup.perc_load;
}
}
void NIUController::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
{
string indent_str(indent, ' ');
string indent_str_next(indent+2, ' ');
bool long_channel = XML->sys.longer_channel_device;
bool power_gating = XML->sys.power_gating;
if (is_tdp)
{
cout << "NIU:" << endl;
cout << indent_str<< "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic*niup.clockRate << " W" << endl;
cout << indent_str<< "Subthreshold Leakage = "
<< (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
if (power_gating) cout << indent_str << "Subthreshold Leakage with power gating = "
<< (long_channel? power.readOp.power_gated_with_long_channel_leakage : power.readOp.power_gated_leakage) << " W" << endl;
cout << indent_str<< "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic*niup.clockRate << " W" << endl;
cout<<endl;
}
else
{
}
}
void NIUController::set_niu_param()
{
niup.clockRate = XML->sys.niu.clockrate;
niup.clockRate *= 1e6;
niup.num_units = XML->sys.niu.number_units;
niup.duty_cycle = XML->sys.niu.duty_cycle;
niup.perc_load = XML->sys.niu.total_load_perc;
niup.type = XML->sys.niu.type;
if ( XML->sys.niu.vdd>0)
{
interface_ip.specific_hp_vdd = true;
interface_ip.specific_lop_vdd = true;
interface_ip.specific_lstp_vdd = true;
interface_ip.hp_Vdd = XML->sys.niu.vdd;
interface_ip.lop_Vdd = XML->sys.niu.vdd;
interface_ip.lstp_Vdd = XML->sys.niu.vdd;
}
if ( XML->sys.niu.power_gating_vcc > -1)
{
interface_ip.specific_vcc_min = true;
interface_ip.user_defined_vcc_min = XML->sys.niu.power_gating_vcc;
}
// niup.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
}
PCIeController::PCIeController(ParseXML *XML_interface,InputParameter* interface_ip_)
:XML(XML_interface),
interface_ip(*interface_ip_)
{
double frontend_area, phy_area, ctrl_area, SerDer_area;
double ctrl_dyn, frontend_dyn, SerDer_dyn;
double ctrl_gates,frontend_gates, SerDer_gates=0.;
double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
double NMOS_sizing, PMOS_sizing;
/* Assuming PCIe is bit-slice based architecture
* This is the reason for /8 in both area and power calculation
* to get per lane numbers
*/
set_pcie_param();
local_result = init_interface(&interface_ip);
if (pciep.type == 0) //high performance NIU
{
//Area estimation based on average of die photo from Niagara 2 and Cadence ChipEstimate @ 65nm.
ctrl_area = (5.2 + 0.5)/2 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
//Area estimation based on average of die photo from Niagara 2, and Cadence ChipEstimate @ 65nm.
frontend_area = (5.2 + 0.1)/2 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
//Area estimation based on average of die photo from Niagara 2 and Cadence ChipEstimate hard IP @65nm.
//SerDer is very hard to scale
SerDer_area = (3.03 + 0.36) * (interface_ip.F_sz_um/0.065);//* (interface_ip.F_sz_um/0.065);
phy_area = frontend_area + SerDer_area;
//total area
//Power
//Cadence ChipEstimate using 65nm the controller includes everything: the PHY, the data link and transaction layer
ctrl_dyn = 3.75e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);
// //Cadence ChipEstimate using 65nm soft IP;
// frontend_dyn = 0.27e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);
//SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm
SerDer_dyn = 0.01*4*(interface_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;//PCIe 2.0 max per lane speed is 4Gb/s
SerDer_dyn /= pciep.clockRate;//covert to energy per clock cycle
//power_t.readOp.dynamic = (ctrl_dyn)*pciep.num_channels;
//Cadence ChipEstimate using 65nm
ctrl_gates = 900000/8*pciep.num_channels;
// frontend_gates = 120000/8;
// SerDer_gates = 200000/8;
NMOS_sizing = 5*g_tp.min_w_nmos_;
PMOS_sizing = 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
}
else
{
ctrl_area = 0.412 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
//Area estimation based on average of die photo from Niagara 2, and Cadence ChipEstimate @ 65nm.
SerDer_area = 0.36 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
//total area
//Power
//Cadence ChipEstimate using 65nm the controller includes everything: the PHY, the data link and transaction layer
ctrl_dyn = 2.21e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);
// //Cadence ChipEstimate using 65nm soft IP;
// frontend_dyn = 0.27e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);
//SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm
SerDer_dyn = 0.01*4*(interface_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;//PCIe 2.0 max per lane speed is 4Gb/s
SerDer_dyn /= pciep.clockRate;//covert to energy per clock cycle
//Cadence ChipEstimate using 65nm
ctrl_gates = 200000/8*pciep.num_channels;
// frontend_gates = 120000/8;
SerDer_gates = 200000/8*pciep.num_channels;
NMOS_sizing = g_tp.min_w_nmos_;
PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
}
area.set_area(((ctrl_area + (pciep.withPHY? SerDer_area:0))/8*pciep.num_channels)*1e6);
power_t.readOp.dynamic = (ctrl_dyn + (pciep.withPHY? SerDer_dyn:0))*pciep.num_channels;
power_t.readOp.leakage = (ctrl_gates + (pciep.withPHY? SerDer_gates:0))*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device);
double pg_reduction = power_gating_leakage_reduction(false);
power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction;
power_t.readOp.power_gated_leakage = power_t.readOp.leakage * pg_reduction;
power_t.readOp.power_gated_with_long_channel_leakage = power_t.readOp.power_gated_leakage * long_channel_device_reduction;
power_t.readOp.gate_leakage = (ctrl_gates + (pciep.withPHY? SerDer_gates:0))*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
}
void PCIeController::computeEnergy(bool is_tdp)
{
if (is_tdp)
{
power = power_t;
power.readOp.dynamic *= pciep.duty_cycle;
}
else
{
rt_power = power_t;
rt_power.readOp.dynamic *= pciep.perc_load;
}
}
void PCIeController::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
{
string indent_str(indent, ' ');
string indent_str_next(indent+2, ' ');
bool long_channel = XML->sys.longer_channel_device;
bool power_gating = XML->sys.power_gating;
if (is_tdp)
{
cout << "PCIe:" << endl;
cout << indent_str<< "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic*pciep.clockRate << " W" << endl;
cout << indent_str<< "Subthreshold Leakage = "
<< (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
if (power_gating) cout << indent_str << "Subthreshold Leakage with power gating = "
<< (long_channel? power.readOp.power_gated_with_long_channel_leakage : power.readOp.power_gated_leakage) << " W" << endl;
cout << indent_str<< "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic*pciep.clockRate << " W" << endl;
cout<<endl;
}
else
{
}
}
void PCIeController::set_pcie_param()
{
pciep.clockRate = XML->sys.pcie.clockrate;
pciep.clockRate *= 1e6;
pciep.num_units = XML->sys.pcie.number_units;
pciep.num_channels = XML->sys.pcie.num_channels;
pciep.duty_cycle = XML->sys.pcie.duty_cycle;
pciep.perc_load = XML->sys.pcie.total_load_perc;
pciep.type = XML->sys.pcie.type;
pciep.withPHY = XML->sys.pcie.withPHY;
if ( XML->sys.pcie.vdd>0)
{
interface_ip.specific_hp_vdd = true;
interface_ip.specific_lop_vdd = true;
interface_ip.specific_lstp_vdd = true;
interface_ip.hp_Vdd = XML->sys.pcie.vdd;
interface_ip.lop_Vdd = XML->sys.pcie.vdd;
interface_ip.lstp_Vdd = XML->sys.pcie.vdd;
}
if ( XML->sys.pcie.power_gating_vcc > -1)
{
interface_ip.specific_vcc_min = true;
interface_ip.user_defined_vcc_min = XML->sys.pcie.power_gating_vcc;
}
// pciep.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
}
FlashController::FlashController(ParseXML *XML_interface,InputParameter* interface_ip_)
:XML(XML_interface),
interface_ip(*interface_ip_)
{
double frontend_area, phy_area, ctrl_area, SerDer_area;
double ctrl_dyn, frontend_dyn, SerDer_dyn;
double ctrl_gates,frontend_gates, SerDer_gates=0.;
double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
double NMOS_sizing, PMOS_sizing;
/* Assuming PCIe is bit-slice based architecture
* This is the reason for /8 in both area and power calculation
* to get per lane numbers
*/
set_fc_param();
local_result = init_interface(&interface_ip);
if (fcp.type == 0) //high performance NIU
{
cout<<"Current McPAT does not support high performance flash contorller since even low power designs are enough for maintain throughput"<<endl;
exit(0);
NMOS_sizing = 5*g_tp.min_w_nmos_;
PMOS_sizing = 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
}
else
{
ctrl_area = 0.243 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
//Area estimation based on Cadence ChipEstimate @ 65nm: NANDFLASH-CTRL from CAST
SerDer_area = 0.36/8 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);
//based On PCIe PHY TSMC65GP from Cadence ChipEstimate @ 65nm, it support 8x lanes with each lane
//speed up to 250MB/s (PCIe1.1x) This is already saturate the 200MB/s of the flash controller core above.
ctrl_gates = 129267;
SerDer_gates = 200000/8;
NMOS_sizing = g_tp.min_w_nmos_;
PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r;
//Power
//Cadence ChipEstimate using 65nm the controller 125mW for every 200MB/s This is power not energy!
ctrl_dyn = 0.125*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);
//SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm
SerDer_dyn = 0.01*1.6*(interface_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;
//max Per controller speed is 1.6Gb/s (200MB/s)
}
double number_channel = 1+(fcp.num_channels-1)*0.2;
area.set_area((ctrl_area + (fcp.withPHY? SerDer_area:0))*1e6*number_channel);
power_t.readOp.dynamic = (ctrl_dyn + (fcp.withPHY? SerDer_dyn:0))*number_channel;
power_t.readOp.leakage = ((ctrl_gates + (fcp.withPHY? SerDer_gates:0))*number_channel)*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device);
power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction;
double pg_reduction = power_gating_leakage_reduction(false);//array structure all retain state;
power_t.readOp.power_gated_leakage = power_t.readOp.leakage * pg_reduction;
power_t.readOp.power_gated_with_long_channel_leakage = power_t.readOp.power_gated_leakage * long_channel_device_reduction;
power_t.readOp.gate_leakage = ((ctrl_gates + (fcp.withPHY? SerDer_gates:0))*number_channel)*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W
}
void FlashController::computeEnergy(bool is_tdp)
{
if (is_tdp)
{
power = power_t;
power.readOp.dynamic *= fcp.duty_cycle;
}
else
{
rt_power = power_t;
rt_power.readOp.dynamic *= fcp.perc_load;
}
}
void FlashController::displayEnergy(uint32_t indent,int plevel,bool is_tdp)
{
string indent_str(indent, ' ');
string indent_str_next(indent+2, ' ');
bool long_channel = XML->sys.longer_channel_device;
bool power_gating = XML->sys.power_gating;
if (is_tdp)
{
cout << "Flash Controller:" << endl;
cout << indent_str<< "Area = " << area.get_area()*1e-6<< " mm^2" << endl;
cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic << " W" << endl;//no multiply of clock since this is power already
cout << indent_str<< "Subthreshold Leakage = "
<< (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl;
if (power_gating) cout << indent_str << "Subthreshold Leakage with power gating = "
<< (long_channel? power.readOp.power_gated_with_long_channel_leakage : power.readOp.power_gated_leakage) << " W" << endl;
cout << indent_str<< "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl;
cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic << " W" << endl;
cout<<endl;
}
else
{
}
}
void FlashController::set_fc_param()
{
// fcp.clockRate = XML->sys.flashc.mc_clock;
// fcp.clockRate *= 1e6;
fcp.peakDataTransferRate = XML->sys.flashc.peak_transfer_rate;
fcp.num_channels = ceil(fcp.peakDataTransferRate/200);
fcp.num_mcs = XML->sys.flashc.number_mcs;
fcp.duty_cycle = XML->sys.flashc.duty_cycle;
fcp.perc_load = XML->sys.flashc.total_load_perc;
fcp.type = XML->sys.flashc.type;
fcp.withPHY = XML->sys.flashc.withPHY;
// flashcp.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6);
if ( XML->sys.flashc.vdd>0)
{
interface_ip.specific_hp_vdd = true;
interface_ip.specific_lop_vdd = true;
interface_ip.specific_lstp_vdd = true;
interface_ip.hp_Vdd = XML->sys.flashc.vdd;
interface_ip.lop_Vdd = XML->sys.flashc.vdd;
interface_ip.lstp_Vdd = XML->sys.flashc.vdd;
}
if ( XML->sys.flashc.power_gating_vcc > -1)
{
interface_ip.specific_vcc_min = true;
interface_ip.user_defined_vcc_min = XML->sys.flashc.power_gating_vcc;
}
}