diff --git a/Assignment 3.Rmd b/Assignment 3.Rmd index 649407e..5caa85f 100644 --- a/Assignment 3.Rmd +++ b/Assignment 3.Rmd @@ -34,7 +34,7 @@ Since our data represnts every time a student makes a comment there are multiple EDGE <- count(D2, comment.to, comment.from) -names(EDGE) <- c("from", "to", "count") +names(EDGE) <- c("to", "from", "count") ``` @@ -105,6 +105,18 @@ In Part II your task is to [look up](http://igraph.org/r/) in the igraph documen * Ensure that sizing allows for an unobstructed view of the network features (For example, the arrow size is smaller) * The vertices are colored according to major * The vertices are sized according to the number of comments they have recieved +```{r} + +plot(g,layout=layout.fruchterman.reingold, vertex.color=VERTEX$major, edge.width=EDGE$count) + +commentnumb <- count(D1, comment.to) +names(commentnumb) <- c("id","count") +commentnumb <- left_join(VERTEX,commentnumb,by=c("id")) +commentnumb$count[is.na(commentnumb$count)] <- 0 + +plot(g,layout=layout.fruchterman.reingold, vertex.color=VERTEX$major, edge.width=EDGE$count, edge.arrow.size= 0.5, vertex.size=15+commentnumb$count) + +``` ## Part III @@ -121,3 +133,58 @@ Once you have done this, also [look up](http://igraph.org/r/) how to generate th ### To Submit Your Assignment Please submit your assignment by first "knitting" your RMarkdown document into an html file and then comit, push and pull request both the RMarkdown file and the html file. + +```{r} +library(tidyr) +library(dplyr) +library(stringr) +library(igraph) +C1 <- read.csv("hudk4050-classes.csv", stringsAsFactors = FALSE, header = TRUE) +C2 <- C1 +``` +# Data Tidying +```{r} +colnames(C2) <- C2[1,] +C2 <- slice(C2,3:49) +C2 <- select(C2,1:8) +C2 <- unite(C2, "name", `First Name`, `Last Name`, sep = " ") +C2$name <- str_replace(C2$name,"`","") +C2$name <- str_to_title(C2$name) +C2 <- C2 %>% mutate_at(2:7, list(toupper)) +C2 <- C2 %>% mutate_at(2:7, str_replace_all, " ", "") + +``` +#Data Restructring +```{r} +C3 <- C2 %>% gather(label,class, 2:7, na.rm = TRUE, convert = FALSE) %>% select(name, class) +C3$count <- 1 +C3 <- filter(C3, class != "") +C3 <- unique(C3) +C3 <- spread(C3, class, count) +rownames(C3) <- C3$name +C3 <- select(C3, -name, -HUDK4050) +C3[is.na(C3)] <- 0 +``` +# Matrix Operations +```{r} +C4 <- as.matrix(C3) +C4 <- C4 %*% t(C4) +``` +# Graphing +```{r} +g <- graph.adjacency(C4, mode="undirected", diag = FALSE) +plot(g,layout=layout.fruchterman.reingold, vertex.size = 4, + #degree(g)*0.7, + vertex.label.cex=0.8, + vertex.label.color="black", + vertex.color="blue") +``` + +#Centrality +```{r} +sort(degree(g), decreasing = TRUE) +sort(betweenness(g), decreasing = TRUE) +``` + +Based on the data we can find that Yifei Zhang is the most central person in the network, and he/she connects two centralized groups. Therefore, she is the most appropriate person to help students contacting each other. + diff --git a/Assignment-3.html b/Assignment-3.html new file mode 100644 index 0000000..320f9b4 --- /dev/null +++ b/Assignment-3.html @@ -0,0 +1,651 @@ + + + + +
+ + + + + + + + +colnames(C2) <- C2[1,]
+C2 <- slice(C2,3:49)
+C2 <- select(C2,1:8)
+C2 <- unite(C2, "name", `First Name`, `Last Name`, sep = " ")
+C2$name <- str_replace(C2$name,"`","")
+C2$name <- str_to_title(C2$name)
+C2 <- C2 %>% mutate_at(2:7, list(toupper))
+C2 <- C2 %>% mutate_at(2:7, str_replace_all, " ", "")
+#Data Restructring
+C3 <- C2 %>% gather(label,class, 2:7, na.rm = TRUE, convert = FALSE) %>% select(name, class)
+C3$count <- 1
+C3 <- filter(C3, class != "")
+C3 <- unique(C3)
+C3 <- spread(C3, class, count)
+rownames(C3) <- C3$name
+C3 <- select(C3, -name, -HUDK4050)
+C3[is.na(C3)] <- 0
+C4 <- as.matrix(C3)
+C4 <- C4 %*% t(C4)
+g <- graph.adjacency(C4, mode="undirected", diag = FALSE)
+plot(g,layout=layout.fruchterman.reingold, vertex.size = 4,
+ #degree(g)*0.7,
+ vertex.label.cex=0.8,
+ vertex.label.color="black",
+ vertex.color="blue")
+
+#Centrality
+sort(degree(g), decreasing = TRUE)
+## Guoliang Xu Hangshi Jin Jiaao Qi
+## 31 31 31
+## Jiacong Zhu Jiahao Shen Wenqi Gao
+## 31 31 31
+## Xiyun Zhang Yingxin Xie Yifei Zhang
+## 31 31 24
+## Xiaojia Liu Yuxuan Ge Zhixin Zheng
+## 22 22 20
+## Stanley Si Heng Zhao Dan Lei Yuting Zhou
+## 19 16 16
+## Xueshi Wang Zhouda Wu Ruoyi Zhang
+## 14 14 12
+## Tianyu Chang Xijia Wang Yunzhao Wu
+## 12 12 12
+## Jie Yao Zach Friedman Nicole Schlosberg
+## 11 11 10
+## Yixiong Xu Berj Akian Kaijie Fang
+## 10 9 9
+## Rong Sang Yucheng Pan Amanda Oliveira
+## 8 7 6
+## Fei Wang Jiasheng Yu Wenning Xiao
+## 6 6 4
+## Yingxin Ye Danny Shan Fangqi Liu
+## 2 1 1
+## Hyungoo Lee Shuying Xiong Abdul Malik Muftau
+## 1 1 0
+## Ali Al Jabri Chris Kim He Chen
+## 0 0 0
+## Mahshad Davoodifard Qianhui Yuan Sara Vasquez
+## 0 0 0
+## Vidya Madhavan Yurui Wang
+## 0 0
+sort(betweenness(g), decreasing = TRUE)
+## Yifei Zhang Stanley Si Heng Zhao Dan Lei
+## 260.6143603 97.2791152 83.4785714
+## Zhixin Zheng Zach Friedman Nicole Schlosberg
+## 66.2352941 43.3856397 36.6078619
+## Yingxin Ye Xueshi Wang Yuting Zhou
+## 34.0000000 24.1453512 19.7898193
+## Zhouda Wu Guoliang Xu Hangshi Jin
+## 8.9230159 7.5944061 7.5944061
+## Jiaao Qi Jiacong Zhu Jiahao Shen
+## 7.5944061 7.5944061 7.5944061
+## Wenqi Gao Xiyun Zhang Yingxin Xie
+## 7.5944061 7.5944061 7.5944061
+## Yixiong Xu Jie Yao Xiaojia Liu
+## 5.0523810 4.4984127 3.2007978
+## Yuxuan Ge Yucheng Pan Abdul Malik Muftau
+## 3.2007978 0.8333333 0.0000000
+## Ali Al Jabri Amanda Oliveira Berj Akian
+## 0.0000000 0.0000000 0.0000000
+## Chris Kim Danny Shan Fangqi Liu
+## 0.0000000 0.0000000 0.0000000
+## Fei Wang He Chen Hyungoo Lee
+## 0.0000000 0.0000000 0.0000000
+## Jiasheng Yu Kaijie Fang Mahshad Davoodifard
+## 0.0000000 0.0000000 0.0000000
+## Qianhui Yuan Rong Sang Ruoyi Zhang
+## 0.0000000 0.0000000 0.0000000
+## Sara Vasquez Shuying Xiong Tianyu Chang
+## 0.0000000 0.0000000 0.0000000
+## Vidya Madhavan Wenning Xiao Xijia Wang
+## 0.0000000 0.0000000 0.0000000
+## Yunzhao Wu Yurui Wang
+## 0.0000000 0.0000000
+Based on the data we can find that Yifei Zhang is the most central person in the network, and he/she connects two centralized groups. Therefore, she is the most appropriate person to help students contacting each other.
+