diff --git a/examples/int_to_Zp.v b/examples/int_to_Zp.v index 9db02f1..a98f461 100644 --- a/examples/int_to_Zp.v +++ b/examples/int_to_Zp.v @@ -45,10 +45,6 @@ Definition eqmodp (x y : int) := modp x = modp y. Definition eq_Zmodp (x y : Zmodp) := (x = y). Arguments eq_Zmodp /. -(* Axiom (eqp_refl : Reflexive eqmodp). *) -(* Axiom (eqp_sym : Symmetric eqmodp). *) -(* Axiom (eqp_trans : Transitive eqmodp). *) - Notation "0" := zero : int_scope. Notation "0" := zerop : Zmodp_scope. Notation "x == y" := (eqmodp x%int y%int) diff --git a/examples/nat_ind.v b/examples/nat_ind.v index ace8f58..b972c27 100644 --- a/examples/nat_ind.v +++ b/examples/nat_ind.v @@ -23,14 +23,15 @@ Variables (to_nat : I -> nat) (of_nat : nat -> I). Hypothesis to_natK : forall x, of_nat (to_nat x) = x. Hypothesis of_nat0 : of_nat O = I0. -Hypothesis of_natS : forall x n, of_nat n = x -> of_nat (S n) = IS x. +Hypothesis of_natS : forall n, of_nat (S n) = IS (of_nat n). -(* We only need/ (2a,3) which is morally that Nmap is a split injection *) +(* We only need (2a,3), so it suffices that to_nat is a retraction *) Definition RI : Param2a3.Rel I nat := SplitSurj.toParamSym (SplitSurj.Build to_natK). Definition RI0 : RI I0 O. Proof. exact of_nat0. Qed. -Definition RIS m n : RI m n -> RI (IS m) (S n). Proof. exact: of_natS. Qed. +Definition RIS m n : RI m n -> RI (IS m) (S n). +Proof. by move=> <-; apply: of_natS. Qed. Trocq Use RI RI0 RIS. diff --git a/examples/peano_bin_nat.v b/examples/peano_bin_nat.v index 84bb71c..a290253 100644 --- a/examples/peano_bin_nat.v +++ b/examples/peano_bin_nat.v @@ -19,7 +19,7 @@ From Trocq_examples Require Import N. Set Universe Polymorphism. (* the best we can do to link these types is (4,4), but -we only need (2a,3) which is morally that Nmap is a split injection *) +we only need (2a,3) si ut suffices that N.to_nat is a retraction *) Definition RN : Param2a3.Rel N nat := SplitSurj.toParamSym (SplitSurj.Build N.to_natK).