-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathleftist.v
325 lines (273 loc) · 10.3 KB
/
leftist.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
From Coq Require Import ssreflect ssrbool ssrfun.
From mathcomp Require Import ssrnat eqtype order seq path prime.
From favssr Require Import prelude bintree priority.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.POrderTheory.
Import Order.TotalTheory.
Open Scope order_scope.
Section Intro.
Context {disp : unit} {T : orderType disp}.
Definition lheap T := tree (T * nat).
Definition mht (h : lheap T) : nat :=
if h is Node _ (_,n) _ then n else 0.
Fixpoint heap_a {B} (t : tree (T*B)) : bool :=
if t is Node l (m,_) r
then [&& all (>= m) (inorder_a l ++ inorder_a r), heap_a l & heap_a r]
else true.
Fixpoint ltree (h : lheap T) : bool :=
if h is Node l (_, n) r
then [&& min_height r <= min_height l,
n == (min_height r).+1,
ltree l &
ltree r]
else true.
(* Exercise 15.1 *)
Fixpoint rank {A} (t : tree A) : nat :=
if t is Node _ _ r then (rank r).+1 else 0.
Lemma ltree_rank_min t : ltree t -> rank t = min_height t.
Proof.
Admitted.
End Intro.
Section ImplementationPQM.
Context {disp : unit} {T : orderType disp}.
Definition empty_lheap : lheap T := leaf.
Definition get_min_lheap (x0 : T) (t : lheap T) : T :=
if t is Node _ (a, _) _
then a else x0.
Definition node (l : lheap T) (a : T) (r : lheap T) : lheap T :=
let mhl := mht l in
let mhr := mht r in
if mhr <= mhl then Node l (a, mhr.+1) r
else Node r (a, mhl.+1) l.
Fixpoint merge_lheap (h1 : lheap T) : lheap T -> lheap T :=
if h1 is Node l1 (a1,_) r1 then
let fix merge_lheap_h1 (h2 : lheap T) :=
if h2 is Node l2 (a2,_) r2 then
if a1 <= a2 then node l1 a1 (merge_lheap r1 h2)
else node l2 a2 (merge_lheap_h1 r2)
else h1 in
merge_lheap_h1
else id.
Definition insert x h : lheap T :=
merge_lheap (Node leaf (x,1%N) leaf) h.
Definition del_min (t : lheap T) : lheap T :=
if t is Node l _ r then merge_lheap l r else leaf.
End ImplementationPQM.
Section Correctness.
Context {disp : unit} {T : orderType disp}.
Definition mset_lheap (h : lheap T) : seq T := preorder_a h.
Definition invar (h : lheap T) : bool := heap_a h && ltree h.
Lemma mht_min_height (t : lheap T) :
ltree t -> mht t = min_height t.
Proof.
case: t=>//=l [_ n] r /and4P [H /eqP -> _ _].
apply/eqP; rewrite -addn1 eqn_add2r eq_sym.
by apply/eqP/minn_idPr.
Qed.
Lemma mset_node (l : lheap T) a r :
perm_eq (mset_lheap (node l a r)) (a :: mset_lheap l ++ mset_lheap r).
Proof. by rewrite /node; case: ifP=>//= _; rewrite perm_cons perm_catC. Qed.
Lemma ltree_node (l : lheap T) a r :
ltree (node l a r) <-> ltree l /\ ltree r.
Proof.
rewrite /node; split.
- by case: ifP=>/= _ /and4P [_ _ -> ->].
case=>Hl Hr; case: ifP=>/=.
- by move=>H; rewrite -!mht_min_height // H eq_refl Hl Hr.
move/negbT; rewrite -ltNge=>H.
rewrite -!mht_min_height // eq_refl Hl Hr /= andbT.
by apply: ltW.
Qed.
Lemma heap_node (l : lheap T) a r :
heap_a (node l a r) <->
[/\ all (>= a) (inorder_a l ++ inorder_a r), heap_a l & heap_a r].
Proof.
rewrite /node; split.
- case: ifP=>/= _ /and3P // [Ha Hlr Hr]; split=>//.
by rewrite !all_cat in Ha *; case/andP: Ha=>->->.
case=>Ha Hl Hr; case: ifP=>/= _; rewrite Hl Hr /= andbT //.
by rewrite !all_cat in Ha *; case/andP: Ha=>->->.
Qed.
Lemma all_foldl_a {B} (x : T) (t : tree (T*B)) :
all (>= x) (inorder_a t) ->
foldl Order.min x (preorder_a t) = x.
Proof.
elim: t x =>//=l IHl [a _] r IHr x; rewrite all_cat /=.
case/and3P=>Hal Hxa Har; rewrite foldl_cat.
by rewrite min_l // IHl // IHr.
Qed.
Lemma get_min_mins_heap (h : lheap T) x0 :
heap_a h ->
get_min_lheap x0 h = mins x0 (mset_lheap h).
Proof.
case: h=>//=l [a n] r /and3P [+ Hl Hr].
by rewrite all_cat /mins foldl_cat; case/andP=>/all_foldl_a->/all_foldl_a->.
Qed.
Corollary get_min_mins (h : lheap T) x0 :
invar h ->
get_min_lheap x0 h = mins x0 (mset_lheap h).
Proof. by rewrite /invar => /andP [+ _]; exact: get_min_mins_heap. Qed.
Lemma mset_merge_heap (h1 h2 : lheap T) :
perm_eq (mset_lheap (merge_lheap h1 h2)) (mset_lheap h1 ++ mset_lheap h2).
Proof.
elim: h1 h2=>//= l1 _ [a1 n1] r1 IHr1; elim=>/= [|l2 _ [a2 n2] r2 IHr2].
- by rewrite cats0 /=.
case: ifP=>/= _; apply: perm_trans; try by apply: mset_node.
- rewrite perm_cons perm_sym -catA perm_cat2l perm_sym.
by apply: IHr1=>//=; rewrite H2 Hl2 Hr2.
rewrite perm_sym -!cat_cons perm_catCA perm_cat2l /= perm_sym.
by apply: IHr2.
Qed.
Lemma ltree_merge_heap (l r : lheap T) :
ltree l -> ltree r -> ltree (merge_lheap l r).
Proof.
elim: l r=>//= l1 _ [a1 n1] r1 IHr1; elim=>//= l2 _ [a2 n2] r2 IHr2.
case/and4P=>Eh1 En1 Hl1 Hr1; case/and4P=>Eh2 En2 Hl2 Hr2.
case: ifP=>/= _; apply/ltree_node; split=>//.
- by apply: IHr1=>//=; rewrite Eh2 En2 Hl2 Hr2.
by apply: IHr2=>//; rewrite Eh1 En1 Hl1 Hr1.
Qed.
Lemma heap_merge_heap (l r : lheap T) :
heap_a l -> heap_a r -> heap_a (merge_lheap l r).
Proof.
elim: l r=>//= l1 _ [a1 n1] r1 IHr1; elim=>//= l2 _ [a2 n2] r2 IHr2.
case/and3P=>Ha1 Hl1 Hr1; case/and3P=>Ha2 Hl2 Hr2.
case: ifP=>/= Ha; apply/heap_node; split=>//.
- rewrite !all_cat in Ha1 *; case/andP: Ha1=>-> Ha1 /=.
rewrite (perm_all _ (perm_pre_in_a _)) (perm_all _ (mset_merge_heap _ _))
all_cat /= all_cat -!(perm_all _ (perm_pre_in_a _)) Ha Ha1 /=.
rewrite all_cat in Ha2; case/andP: Ha2=>Hal2 Har2.
apply/andP; split.
- by apply/sub_all/Hal2=>z Hz; apply/le_trans/Hz.
by apply/sub_all/Har2=>z Hz; apply/le_trans/Hz.
- by apply: IHr1=>//=; rewrite Ha2 Hl2 Hr2.
- move/negbT: Ha; rewrite -ltNge=>Ha.
rewrite !all_cat in Ha2 *; case/andP: Ha2=>-> Ha2 /=.
move: (@mset_merge_heap (Node l1 (a1, n1) r1) r2)=>/= H'.
rewrite (perm_all _ (perm_pre_in_a _)) (perm_all _ H') /= !all_cat
-!(perm_all _ (perm_pre_in_a _)) (ltW Ha) Ha2 /= andbT.
rewrite all_cat in Ha1; case/andP: Ha1=>Hal1 Har1.
apply/andP; split.
- by apply/sub_all/Hal1=>z Hz; apply/ltW/lt_le_trans/Hz.
by apply/sub_all/Har1=>z Hz; apply/ltW/lt_le_trans/Hz.
by apply: IHr2=>//; rewrite Ha1 Hl1 Hr1.
Qed.
Corollary invar_merge h1 h2 :
invar h1 -> invar h2 -> invar (merge_lheap h1 h2).
Proof.
rewrite /invar; case/andP=>Hh1 Hl1; case/andP=>Hh2 Hl2.
apply/andP; split.
- by apply: heap_merge_heap.
by apply: ltree_merge_heap.
Qed.
Corollary mset_merge h1 h2 :
invar h1 -> invar h2 ->
perm_eq (mset_lheap (merge_lheap h1 h2)) (mset_lheap h1 ++ mset_lheap h2).
Proof. by move=>_ _; exact: mset_merge_heap. Qed.
Lemma invar_empty : invar empty_lheap.
Proof. by []. Qed.
Lemma mset_empty : mset_lheap empty_lheap = [::].
Proof. by []. Qed.
Corollary invar_insert x h :
invar h -> invar (insert x h).
Proof. by exact: invar_merge. Qed.
Corollary mset_insert x h :
invar h -> perm_eq (mset_lheap (insert x h)) (x :: mset_lheap h).
Proof. by move=>_; apply: mset_merge_heap. Qed.
Corollary invar_delmin h :
invar h -> ~~ nilp (mset_lheap h) -> invar (del_min h).
Proof.
rewrite /invar; case: h=>//= l [a n] r /and5P [/and3P [_ Hhl Hhr] _ _ Hll Hlr] _.
by apply/andP; split; [apply: heap_merge_heap | apply: ltree_merge_heap].
Qed.
Corollary mset_delmin x0 h :
invar h -> ~~ nilp (mset_lheap h) ->
perm_eq (mset_lheap (del_min h)) (rem (get_min_lheap x0 h) (mset_lheap h)).
Proof.
rewrite /invar; case: h=>//= l [a n] r /and5P [/and3P [_ Hhl Hhr] _ _ Hll Hlr] _.
apply: perm_trans; first by apply: mset_merge_heap.
by rewrite rem_cons eq_refl.
Qed.
Definition LHeapPQM :=
@APQM.make _ _ (lheap T)
empty_lheap insert del_min get_min_lheap merge_lheap
mset_lheap invar
invar_empty mset_empty
invar_insert mset_insert
invar_delmin mset_delmin
get_min_mins
invar_merge mset_merge.
End Correctness.
Section RunningTimeAnalysis.
Context {disp : unit} {T : orderType disp}.
Fixpoint T_merge (h1 : lheap T) : lheap T -> nat :=
if h1 is Node l1 (a1,_) r1 then
let fix T_merge_h1 (h2 : lheap T) :=
if h2 is Node l2 (a2,_) r2 then
if a1 <= a2 then T_merge r1 h2
else T_merge_h1 r2
else 1%N in
T_merge_h1
else fun=>1%N.
Definition T_insert x h :=
T_merge (Node leaf (x,1%N) leaf) h + 1.
Definition T_del_min (t : lheap T) : nat :=
if t is Node l _ r then T_merge l r + 1 else 1%N.
Lemma T_merge_bound l r :
ltree l -> ltree r ->
T_merge l r <= min_height l + min_height r + 1.
Proof.
elim: l r=>/=; first by move=>r _ _; rewrite add0n; apply: leq_addl.
move=>l1 _ [a1 n1] r1 IHr1; elim=>/=; first by move=>_ _; rewrite addn0 addn1.
move=>l2 _ [a2 n2] r2 IHr2.
case/and4P=>Hm1 En1 Hl1 Hr1; case/and4P=>Hm2 En2 Hl2 Hr2.
case: ifP=>/= Ha.
- apply: leq_trans; first by apply: IHr1=>//=; rewrite Hm2 En2 Hl2 Hr2.
rewrite /= !addnA !leq_add2r addn1.
by apply: ltnW; rewrite ltnS leq_min -leEnat Hm1 lexx.
apply: leq_trans; first by apply: IHr2=>//=; rewrite Hm1 En1 Hl1 Hr1.
rewrite /= leq_add2r leq_add2l addn1.
by apply: ltnW; rewrite ltnS leq_min -leEnat Hm2 lexx.
Qed.
Corollary T_merge_log l r :
ltree l -> ltree r ->
T_merge l r <= trunc_log 2 (size1_tree l) + trunc_log 2 (size1_tree r) + 1.
Proof.
move=>Hl Hr; apply: leq_trans; first by by apply: T_merge_bound.
by rewrite leq_add2r; apply: leq_add; apply: trunc_log_max=>//; apply: exp_mh_leq.
Qed.
Corollary T_insert_log t x :
ltree t -> T_insert x t <= trunc_log 2 (size1_tree t) + 3.
Proof.
move=>H; rewrite /T_insert (_ : 3 = 2 + 1) // addnA leEnat leq_add2r.
apply: leq_trans; first by apply: T_merge_log.
by rewrite addnAC addnC.
Qed.
Lemma trunc_log2_ltD x y :
(0 < x -> 0 < y ->
trunc_log 2 x + trunc_log 2 y + 1 < 2 * up_log 2 (x + y))%N.
Proof.
move=>Hx Hy.
have H: (2 ^ (trunc_log 2 x + trunc_log 2 y + 1) <= 2*x*y)%N.
- rewrite !expnD expn1 mulnC -mulnA leq_pmul2l //.
by apply: leq_mul; apply: trunc_logP.
have H' : (2*x*y < (x+y)^2)%N.
- by rewrite sqrnD mulnA -[X in (X < _)%N]add0n ltn_add2r addn_gt0 !sqrn_gt0 Hx Hy.
have H'': ((x+y)^2 <= 2 ^ (2 * up_log 2 (x + y)))%N.
- rewrite (mulnC 2) expnM leq_exp2r //.
by apply: up_logP.
rewrite -(ltn_exp2l _ _ (isT : (1 < 2)%N)).
by apply: (leq_ltn_trans H); apply: (leq_trans H').
Qed.
Lemma T_del_min_log t :
ltree t -> T_del_min t <= 2 * up_log 2 (size1_tree t) + 1.
Proof.
case: t=>//= l [a n] r /and4P [Hm En Hl Hr]; rewrite leEnat leq_add2r.
apply: leq_trans; first by by apply: T_merge_bound.
apply: (leq_trans (n:=trunc_log 2 (size1_tree l) + trunc_log 2 (size1_tree r) + 1)).
- by rewrite leq_add2r; apply: leq_add; apply: trunc_log_max=>//; apply: exp_mh_leq.
by apply/ltnW/trunc_log2_ltD; rewrite size1_size addn1.
Qed.
End RunningTimeAnalysis.