-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbintree.v
638 lines (514 loc) · 18.1 KB
/
bintree.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
From Equations Require Import Equations.
From Coq Require Import ssreflect ssrbool ssrfun.
From mathcomp Require Import eqtype ssrnat seq prime.
From favssr Require Import prelude.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Inductive tree A := Leaf | Node of (tree A) & A & (tree A).
Definition leaf {A} : tree A := @Leaf A.
Definition is_node {A} (t : tree A) :=
if t is Node _ _ _ then true else false.
Lemma not_node_leaf {A} (t : tree A) : ~~ is_node t -> t = leaf.
Proof. by case: t. Qed.
(* dependent helper for irrefutable pattern matching *)
Inductive non_empty_if {A} (b : bool) (t : tree A) : Type :=
| Nd l a r : t = Node l a r -> b -> non_empty_if b t
| Def : ~~ b -> non_empty_if b t.
Section BasicFunctions.
Context {A B : Type}.
Fixpoint map_tree (f : A -> B) (t : tree A) : tree B :=
if t is Node l x r
then Node (map_tree f l) (f x) (map_tree f r)
else leaf.
Fixpoint inorder {A} (t : tree A) : seq A :=
if t is Node l x r
then inorder l ++ [:: x] ++ inorder r
else [::].
Fixpoint preorder (t : tree A) : seq A :=
if t is Node l x r
then x :: preorder l ++ preorder r
else [::].
Fixpoint postorder (t : tree A) : seq A :=
if t is Node l x r
then postorder l ++ postorder r ++ [:: x]
else [::].
(* number of nodes *)
Fixpoint size_tree (t : tree A) : nat :=
if t is Node l _ r
then size_tree l + size_tree r + 1
else 0.
Lemma size0leaf t : size_tree t = 0 -> t = leaf.
Proof. by case: t=>//=l a r; rewrite addn1. Qed.
(* number of leaves *)
Fixpoint size1_tree (t : tree A) : nat :=
if t is Node l _ r
then size1_tree l + size1_tree r
else 1.
Lemma size1_size t : size1_tree t = size_tree t + 1.
Proof.
elim: t=>//= l -> _ r ->.
by rewrite addnAC addnA.
Qed.
Lemma size_inorder t : size (inorder t) = size_tree t.
Proof.
elim: t=>//=l IHl x r IHr.
by rewrite size_cat /= IHl IHr addnS addn1.
Qed.
Lemma map_inorder f t : map f (inorder t) = inorder (map_tree f t).
Proof.
elim: t=>//=l IHl x r IHr.
by rewrite map_cat map_cons IHl IHr.
Qed.
Fixpoint height (t : tree A) : nat :=
if t is Node l _ r
then maxn (height l) (height r) + 1
else 0.
Lemma heightE (t : tree A) : reflect (t = leaf) (height t == 0).
Proof.
apply: (iffP idP); last by move=>->.
by case: t=>//= l a r; rewrite addn1 => /eqP.
Qed.
Fixpoint min_height (t : tree A) : nat :=
if t is Node l _ r
then minn (min_height l) (min_height r) + 1
else 0.
Lemma h_leq t : height t <= size_tree t.
Proof.
elim: t=>//= l IHl _ r IHr; rewrite leq_add2r geq_max.
apply/andP; split.
- by apply/(leq_trans IHl)/leq_addr.
by apply/(leq_trans IHr)/leq_addl.
Qed.
Lemma mh_leq t : min_height t <= height t.
Proof.
elim: t=>//= l IHl _ r IHr; rewrite leq_add2r leq_max /minn.
by case: ifP=>H; rewrite ?IHl ?IHr // orbT.
Qed.
Lemma exp_mh_leq t : 2 ^ min_height t <= size1_tree t.
Proof.
elim: t=>//= l IHl _ r IHr.
rewrite expnD expn1 muln2 -addnn.
apply: (leq_trans (n := 2^ min_height l + 2^ min_height r)); last by apply: leq_add.
by apply: leq_add; rewrite leq_exp2l //; [apply: geq_minl | apply: geq_minr].
Qed.
Lemma exp_h_geq t : size1_tree t <= 2 ^ height t.
Proof.
elim: t=>//= l IHl _ r IHr.
rewrite expnD expn1 muln2 -addnn.
apply: (leq_trans (n := 2^ height l + 2^ height r)); first by apply: leq_add.
by apply: leq_add; rewrite leq_exp2l //; [apply: leq_maxl | apply: leq_maxr].
Qed.
Fixpoint subtrees (t : tree A) : seq (tree A) :=
if t is Node l x r
then Node l x r :: subtrees l ++ subtrees r
else [:: leaf].
(* Exercise 4.1 *)
Fixpoint inorder2 (t : tree A) (acc : seq A) : seq A := [::]. (* FIXME *)
Lemma inorder2_correct t xs : inorder2 t xs = inorder t ++ xs.
Proof.
Admitted.
End BasicFunctions.
Section EqTree.
Context {T : eqType}.
Fixpoint eqtree (t1 t2 : tree T) :=
match t1, t2 with
| Leaf, Leaf => true
| Node l1 x1 r1, Node l2 x2 r2 => [&& x1 == x2, eqtree l1 l2 & eqtree r1 r2]
| _, _ => false
end.
Lemma eqtreeP : Equality.axiom eqtree.
Proof.
move; elim=> [|l1 IHl x1 r1 IHr] [|l2 x2 r2] /=; try by constructor.
have [<-/=|neqx] := x1 =P x2; last by apply: ReflectF; case.
apply: (iffP andP).
- by case=>/IHl->/IHr->.
by case=><-<-; split; [apply/IHl|apply/IHr].
Qed.
Canonical tree_eqMixin := EqMixin eqtreeP.
Canonical tree_eqType := Eval hnf in EqType (tree T) tree_eqMixin.
Lemma perm_pre_in (t : tree T) : perm_eq (inorder t) (preorder t).
Proof.
elim: t=>//=l IHl a r IHr.
rewrite perm_catC /= perm_cons perm_catC.
by apply: perm_cat.
Qed.
Lemma subtree_self (t : tree T) : t \in subtrees t.
Proof. by case: t=>//=l x r; rewrite inE eq_refl. Qed.
End EqTree.
Section CompleteTrees.
Context {A : Type}.
(* aka perfect *)
Fixpoint complete (t : tree A) : bool :=
if t is Node l x r
then [&& height l == height r, complete l & complete r]
else true.
Lemma complete_mh_h t : complete t <-> min_height t == height t.
Proof.
elim: t=>//= l IHl _ r IHr; split.
- by case/and3P=>/eqP H /IHl /eqP -> /IHr /eqP ->; rewrite H minnn maxnn.
rewrite eqn_add2r /minn /maxn; case: ltnP=>H1; case: ltnP=>H2 /eqP H.
- by rewrite H ltnNge mh_leq in H1.
- rewrite H in H1; move: (leq_ltn_trans H2 H1).
by rewrite ltnNge mh_leq.
- rewrite -H in H2; move: (leq_trans H2 H1).
by rewrite ltnNge mh_leq.
rewrite H in H1; rewrite -H in H2.
have /IHl->: min_height l == height l by rewrite eq_sym eqn_leq H1 mh_leq.
have /[dup]: min_height r == height r by rewrite eq_sym eqn_leq H2 mh_leq.
by rewrite {1}H=>/eqP->/IHr->; rewrite eq_refl.
Qed.
Lemma complete_size1 t : complete t -> size1_tree t = 2^height t.
Proof.
elim: t=>//= l IHl _ r IHr /and3P [/eqP H /IHl -> /IHr ->].
by rewrite H maxnn addnn expnD expn1 muln2.
Qed.
Lemma ncomplete_size1 t : ~~ complete t -> size1_tree t < 2^height t.
Proof.
elim: t=>//= l IHl _ r IHr; rewrite !negb_and.
rewrite expnD expn1 muln2 -addnn.
case H: (_ == _)=>/=.
- case/orP=>//; move/eqP: H=>H.
- move/IHl=>H2; rewrite -H maxnn.
apply: (leq_trans (n:=2 ^ height l + size1_tree r)); first by rewrite ltn_add2r.
by rewrite leq_add2l H exp_h_geq.
move/IHr=>H2; rewrite H maxnn.
apply: (leq_trans (n:=size1_tree l + 2 ^ height r)); first by rewrite ltn_add2l.
by rewrite leq_add2r -H exp_h_geq.
move=>_; move/negbT: H; rewrite neq_ltn.
case/orP=>H; rewrite /maxn.
- rewrite H.
apply: (leq_ltn_trans (n:=2 ^ height l + 2 ^ height r)).
- by apply: leq_add; rewrite exp_h_geq.
by rewrite ltn_add2r ltn_exp2l.
move: (H); rewrite ltnNge leq_eqVlt negb_or =>/andP [_ /negbTE ->].
apply: (leq_ltn_trans (n:=2 ^ height l + 2 ^ height r)).
- by apply: leq_add; rewrite exp_h_geq.
by rewrite ltn_add2l ltn_exp2l.
Qed.
Lemma ncomplete_mh_size1 t : ~~ complete t -> 2^min_height t < size1_tree t.
Proof.
elim: t=>//= l IHl _ r IHr; rewrite negb_and.
rewrite expnD expn1 muln2 -addnn.
case H: (_ && _)=>/=.
- rewrite orbF; case/andP: H=>/complete_mh_h/eqP H1 /complete_mh_h/eqP H2.
rewrite neq_ltn; case/orP=>H; rewrite /minn.
- rewrite H1 H2 H.
apply: (leq_trans (n:=2 ^ height l + 2 ^ height r)).
- by rewrite ltn_add2l ltn_exp2l.
by apply: leq_add; rewrite -?H1 -?H2 exp_mh_leq.
move: (H); rewrite ltnNge leq_eqVlt negb_or H1 H2 =>/andP [_ /negbTE ->].
apply: (leq_trans (n:=2 ^ height l + 2 ^ height r)).
- by rewrite ltn_add2r ltn_exp2l.
by apply: leq_add; rewrite -?H1 -?H2 exp_mh_leq.
move=>_; move/negbT: H; rewrite negb_and; case/orP.
- move/IHl=>H.
apply: (leq_ltn_trans (n:=2 ^ min_height l + size1_tree r)).
- apply: leq_add; first by rewrite leq_exp2l // geq_minl.
apply: (leq_trans _ (exp_mh_leq r)).
by rewrite leq_exp2l // geq_minr.
by rewrite ltn_add2r.
move/IHr=>H.
apply: (leq_ltn_trans (n:=size1_tree l + 2 ^ min_height r)).
- apply: leq_add; last by rewrite leq_exp2l // geq_minr.
apply: (leq_trans _ (exp_mh_leq l)).
by rewrite leq_exp2l // geq_minl.
by rewrite ltn_add2l.
Qed.
Corollary completeE t : complete t <-> size1_tree t = 2^height t.
Proof.
split; first by exact: complete_size1.
move=>E; move/contraR: (@ncomplete_size1 t); apply.
by rewrite E ltnn.
Qed.
(* Exercise 4.2 *)
Fixpoint mcs (t : tree A) : tree A := t. (* FIXME *)
Lemma complete_mcs t : complete (mcs t).
Proof.
Admitted.
End CompleteTrees.
Section CompleteTreesEq.
Context {T : eqType}.
Lemma subtree_mcs (t : tree T) : mcs t \in subtrees t.
Proof.
Admitted.
Lemma mcs_maximal (t u : tree T) :
u \in subtrees t -> complete u ->
height u <= height (mcs t).
Proof.
Admitted.
End CompleteTreesEq.
Section AlmostCompleteTrees.
Context {A : Type}.
Definition acomplete (t : tree A) : bool :=
height t - min_height t <= 1.
Lemma acomplete_h1 t :
acomplete t -> ~~ complete t ->
height t = (min_height t).+1.
Proof.
rewrite /acomplete leq_eqVlt; case/orP.
- rewrite -(eqn_add2r (min_height t)) addnBAC; last by exact: mh_leq.
by rewrite addnK add1n=>/eqP ->.
rewrite ltnS leqn0 subn_eq0=>E.
suff : min_height t == height t by move/complete_mh_h=>->.
by rewrite eqn_leq E mh_leq.
Qed.
Lemma acomplete_minimal (s t : tree A) :
acomplete s -> size_tree s <= size_tree t ->
height s <= height t.
Proof.
case/boolP: (complete s).
- move/completeE=>H _ S; rewrite -(leq_exp2l (m:=2)) // -H.
apply/leq_trans/(exp_h_geq t).
by rewrite !size1_size leq_add2r.
move=>/[dup] H /[swap] /acomplete_h1 /[apply] -> S.
rewrite -(ltn_exp2l (m:=2)) //.
apply: (leq_trans (ncomplete_mh_size1 H)).
apply/leq_trans/(exp_h_geq t).
by rewrite !size1_size leq_add2r.
Qed.
Lemma acomplete_h t : acomplete t -> height t = up_log 2 (size1_tree t).
Proof.
case/boolP: (complete t).
- by move/completeE=>->_; rewrite up_expnK.
move=>/[dup] H /[swap] /acomplete_h1 /[apply] E; rewrite E; symmetry.
apply: up_log_eq=>//; rewrite (ncomplete_mh_size1 H) /= -E.
by exact: exp_h_geq.
Qed.
Lemma acomplete_mh t : acomplete t -> min_height t = trunc_log 2 (size1_tree t).
Proof.
case/boolP: (complete t).
- move/[dup]/complete_mh_h/eqP=>->.
by move/completeE =>->_; rewrite trunc_expnK.
move=>/[dup] H /[swap] /acomplete_h1 /[apply] E; symmetry.
apply: trunc_log_eq=>//; rewrite exp_mh_leq /=.
by apply: (leq_trans (ncomplete_size1 H)); rewrite E.
Qed.
Variable x0 : A.
Equations? bal (n : nat) (xs : seq A) : tree A * seq A by wf n lt :=
bal n xs with inspect (n == 0) := {
| true eqn: Hn => (leaf, xs)
| false eqn: Hn =>
let m := n./2 in
let: (l, ys) := bal m xs in
let: (r, zs) := bal (n-1-m) (behead ys) in
(Node l (head x0 ys) r, zs)
}.
Proof.
all: apply: ssrnat.ltP; move/negbT: Hn; rewrite /m -lt0n=>Hn.
- by apply: half_lt.
rewrite subnAC half_subn.
apply/leq_trans/uphalf_le.
by rewrite subn1 ltn_predL uphalf_gt0.
Defined.
Definition bal_list n xs := (bal n xs).1.
Definition balance_list xs := bal_list (size xs) xs.
Definition bal_tree n t := bal_list n (inorder t).
Definition balance_tree t := bal_tree (size_tree t) t.
Lemma bal_prefix_suffix n xs t ss :
n <= size xs ->
bal n xs = (t, ss) ->
xs = inorder t ++ ss /\ size_tree t = n.
Proof.
elim/ltn_ind: n xs t ss; case.
- by move=>_ ??? _; simp bal=>/=; case=><-<-.
move=>n IH xs t ss Hn; simp bal=>/=; rewrite subn1 /=.
set m := uphalf n.
have Hm : m<=n by exact: uphalf_le.
set m' := n - m.
have Hm' : m'<=n by exact: leq_subr.
case H1: (bal m xs)=>[l ys].
case H2: (bal m' (behead ys))=>[r zs].
case=>{t}<- E; rewrite {zs}E /= in H2 *.
case: (IH m _ xs l ys)=>//.
- by apply: (leq_trans Hm); rewrite ltnW.
move=>E1 E2.
have Hys: m + size ys = size xs.
- by rewrite -E2 -size_inorder -size_cat -E1.
have H3: 0 < size ys.
- rewrite -(ltn_add2l m) addn0 Hys.
by apply/leq_ltn_trans/Hn.
case: (IH m' _ (behead ys) r ss)=>//.
- rewrite size_behead -ltnS prednK //.
by rewrite -(ltn_add2r m) addnBAC // addnK addnC Hys.
rewrite -catA cat_cons E1 E2=><-->; split.
- by case: {H1 H2 E1 Hys}ys H3.
by rewrite (addnC m) addnBAC // addnK addn1.
Qed.
Corollary bal_suffix_size n xs :
n <= size xs -> size (bal n xs).2 = size xs - n.
Proof.
move=>Hn; case E: (bal n xs)=>[l ys] /=.
case: (bal_prefix_suffix Hn E)=>-> H.
by rewrite size_cat size_inorder H addnC addnK.
Qed.
Corollary bal_list_take n xs :
n <= size xs -> inorder (bal_list n xs) = take n xs.
Proof.
move=>Hn; rewrite /bal_list.
case E: (bal n xs)=>[l ys] /=.
case: (bal_prefix_suffix Hn E)=>-> H.
by rewrite take_cat size_inorder H ltnn subnn take0 cats0.
Qed.
Corollary inorder_balance_list xs : inorder (balance_list xs) = xs.
Proof. by rewrite /balance_list bal_list_take // take_oversize. Qed.
Corollary bal_tree_take n t :
n <= size_tree t -> inorder (bal_tree n t) = take n (inorder t).
Proof. by move=>Hn; rewrite /bal_tree bal_list_take // size_inorder. Qed.
Corollary inorder_balance_tree t : inorder (balance_tree t) = inorder t.
Proof. by rewrite /balance_tree bal_tree_take // take_oversize // size_inorder. Qed.
Lemma bal_h_mh n xs t ss :
n <= size xs -> bal n xs = (t, ss) ->
height t = up_log 2 n.+1 /\ min_height t = trunc_log 2 n.+1.
Proof.
elim/ltn_ind: n xs t ss; case.
- by move=>_ ??? _; simp bal=>/=; case=><-.
move=>n IH xs t ss Hn; simp bal=>/=; rewrite subn1 /=.
set m := uphalf n.
have Hm : m<=n by exact: uphalf_le.
have Hm2 : m < size xs by apply: (leq_ltn_trans Hm).
set m' := n - m.
have Hm' : m'<=n by exact: leq_subr.
case H1: (bal m xs)=>[l ys].
have Hys: size ys = size xs - m.
- rewrite (surjective_pairing (bal m xs)) in H1.
by case: H1=>_<-; rewrite bal_suffix_size //; apply: ltnW.
case H2: (bal m' (behead ys))=>[r zs].
case=>{t}<- E; rewrite {zs}E /= in H2 *.
case: (IH _ Hm _ _ _ _ H1)=>[|->->]; first by apply: ltnW.
case: (IH _ Hm' _ _ _ _ H2)=>[|->->].
- by rewrite size_behead -ltnS prednK Hys ?ltn_sub2r // subn_gt0.
have Hmm : m' <= m.
- rewrite /m' (half_uphalfK n) /m addnK uphalf_half.
by apply: leq_addl.
rewrite -(leq_add2r 1) !addn1 in Hmm.
rewrite /maxn /minn !ltnNge leq_up_log // leq_trunc_log //=.
rewrite (up_log2S (isT : 0 < n.+1)) (trunc_log2S (isT : 1 < n.+2)); split.
- by rewrite -addn1 addn1.
rewrite /m' /m {1}(half_uphalfK n) addnK.
by rewrite -(addn2 n) halfD /= andbF /= add0n !addn1.
Qed.
Corollary bal_acomplete n xs t ss :
n <= size xs -> bal n xs = (t, ss) -> acomplete t.
Proof.
rewrite /acomplete.
move/bal_h_mh => /[apply] [[->->]].
have/andP [H1 H2] := trunc_up_log_ltn n.+1 (isT : 1 < 2).
by rewrite -(leq_add2r (trunc_log 2 n.+1)) addnBAC // addnK addnC.
Qed.
(* Exercise 4.3 *)
Fixpoint acomplete_rec (t : tree A) : bool :=
if t is Node l x r then
false (* FIXME *)
else true.
Lemma acomplete_rec_correct t : acomplete_rec t = acomplete t.
Proof.
Admitted.
(* Exercise 4.4 *)
Equations T_bal (n : nat) : nat by wf n lt :=
T_bal n => 1. (* FIXME *)
Parameters c1 c2 : nat.
Lemma T_bal_linear n : T_bal n <= c1 * n + c2.
Proof.
Admitted.
End AlmostCompleteTrees.
Section AugmentedTrees.
Context {A B : Type}.
Fixpoint preorder_a (t : tree (A*B)) : seq A :=
if t is Node l (x,_) r
then x :: preorder_a l ++ preorder_a r
else [::].
Fixpoint inorder_a (t : tree (A*B)) : seq A :=
if t is Node l (x, _) r
then inorder_a l ++ [:: x] ++ inorder_a r
else [::].
Definition inorder_a' (t : tree (A*B)) : seq A := map fst (inorder t).
Definition inorder_a'' (t : tree (A*B)) : seq A := inorder (map_tree fst t).
Lemma in_a : inorder_a =1 inorder_a'.
Proof.
elim=>//=l -> [x y] r ->.
by rewrite /inorder_a' map_cat map_cons.
Qed.
Lemma in_a' : inorder_a =1 inorder_a''.
Proof.
elim=>//=l -> [x y] r ->.
by rewrite /inorder_a'' -!map_inorder /= map_cat map_cons.
Qed.
Definition sz (t : tree (A*nat)) : nat :=
if t is Node _ (_, n) _ then n else 0.
Definition node_sz (l : tree (A*nat)) (a : A) (r : tree (A*nat)) : tree (A*nat) :=
Node l (a, sz l + sz r + 1) r.
Fixpoint invar_sz (t : tree (A*nat)) : bool :=
if t is Node l (_, n) r then
[&& n == sz l + sz r + 1, invar_sz l & invar_sz r ]
else true.
Lemma size_invar t : invar_sz t -> sz t = size_tree t.
Proof. by elim: t=>//=l IHl [a n] r IHr /and3P [/eqP -> /IHl <- /IHr <-]. Qed.
End AugmentedTrees.
Section AugmentedTreesEq.
Context {A : eqType} {B : Type}.
Lemma inorder_a_empty_pred : inorder_a (@Leaf (A*B)) =i pred0.
Proof. by []. Qed.
Lemma perm_pre_in_a (t : tree (A*B)) : perm_eq (inorder_a t) (preorder_a t).
Proof.
elim: t=>//=l IHl [a _] r IHr.
rewrite perm_catC /= perm_cons perm_catC.
by apply: perm_cat.
Qed.
End AugmentedTreesEq.
(* generalized form *)
(* we don't always need a meaningful invariant (and thus an eqType constraint) *)
(* e.g. if B is the value in a KV map *)
Section AugmentedTreesGen.
Context {A : Type} {B : eqType}.
Variables (zero : B) (f : B -> A -> B -> B).
Fixpoint F (t : tree (A*B)) : B :=
if t is Node l (a,_) r then f (F l) a (F r) else zero.
Definition b_val (t : tree (A*B)) : B :=
if t is Node _ (_,b) _ then b else zero.
Definition node_f (l : tree (A*B)) (a : A) (r : tree (A*B)) : tree (A*B) :=
Node l (a, f (b_val l) a (b_val r)) r.
Fixpoint invar_f (t : tree (A*B)) : bool :=
if t is Node l (a,b) r then
[&& b == f (b_val l) a (b_val r), invar_f l & invar_f r ]
else true.
Lemma F_invar t : invar_f t -> b_val t = F t.
Proof. by elim: t=>//=l IHl [a n] r IHr /and3P [/eqP -> /IHl <- /IHr <-]. Qed.
End AugmentedTreesGen.
From mathcomp Require Import order bigop.
Import Order.TotalTheory.
Section AugmentedTreesEx.
Context {A : Type}.
(* Exercise 4.5 *)
Definition T : Type := bool * unit. (* FIXME *)
Definition ch (t : tree (A*T)) : T := (true, tt). (* FIXME *)
Definition node_ch (l : tree (A*T)) (a : A) (r : tree (A*T)) : tree (A*T) :=
@Leaf (A*T). (* FIXME *)
Definition invar_ch (t : tree (A*T)) : bool := true. (* FIXME *)
Lemma ch_invar (t : tree (A*T)) : invar_ch t -> ch t = (complete t, tt). (* FIXME *)
Proof.
Admitted.
Lemma ch_invar_node (l : tree (A*T)) (a : A) (r : tree (A*T)) :
invar_ch l -> invar_ch r -> invar_ch (node_ch l a r).
Proof.
Admitted.
(* Exercise 4.6 *)
Context {disp : unit} {P : orderType disp}.
Variable (x0 : P) (lmin : left_id x0 Order.max).
Lemma rmin : right_id x0 Order.max.
Proof. by move=>x; rewrite maxC lmin. Qed.
Canonical max_monoid := Monoid.Law maxA lmin rmin.
Definition max_seq (xs : seq P) : P :=
\big[Order.max/x0]_(x<-xs) x.
Definition mx (t : tree (P*P)) : option P :=
None. (* FIXME *)
Definition node_mx (l : tree (P*P)) (a : P) (r : tree (P*P)) : tree (P*P) :=
@Leaf (P*P). (* FIXME *)
Fixpoint invar_mx (t : tree (P*P)) : bool :=
true. (* FIXME *)
Lemma max_invar t :
invar_mx t ->
mx t = if t is Leaf then None else Some (max_seq (inorder_a t)).
Proof.
Admitted.
End AugmentedTreesEx.