-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
221 lines (182 loc) · 7.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import copy
import pandas as pd
import numpy as np
import torch
from sklearn.linear_model import BayesianRidge
from sklearn.svm import SVR
from tensorflow.keras.layers import Input, GRU, Dense, Dropout
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
import tensorflow as tf
def sort_predictions(predictions, actuals, video_ids):
unique_vids = np.unique(video_ids)
predictions_per_video = {vid: [] for vid in unique_vids}
actual_per_video = {vid: None for vid in unique_vids}
for prediction, actual, video_id in zip(predictions, actuals, video_ids):
predictions_per_video[video_id].append(prediction)
if actual_per_video[video_id] is None:
actual_per_video[video_id] = actual
assert actual_per_video[video_id] == actual or np.isnan(actual_per_video[video_id]), \
f"Actual values are not equal, {actual_per_video[video_id]} {actual}"
actuals = []
for vid in unique_vids:
actuals.append(actual_per_video[vid])
return predictions_per_video, actuals, unique_vids
def aggregate_predictions(predictions, actuals, video_ids, aggregator):
predictions_per_video, actuals, unique_vids = sort_predictions(
predictions, actuals, video_ids)
aggregated_predictions = [
aggregator(predictions_per_video[vid]) for vid in unique_vids]
return aggregated_predictions, actuals, unique_vids
def split_training(data: pd.DataFrame, shuffle=True, split=0.8):
ids = np.random.permutation(
list(data.index)) if shuffle else list(data.index)
split_index = int(len(ids) * split)
return data.loc[ids[:split_index]], data.loc[ids[split_index:]]
def build_matrixes(data, target_name, feature_name, dtype=np.float32, is_test=False):
targets = []
features = []
video_ids = []
for video_id, row in data.iterrows():
feature = np.array(row[feature_name])
target = np.nan if is_test else row[target_name]
if len(feature) == 0:
print(
f"WARNING: Video '{video_id}' has no '{feature_name}' features")
continue
if len(feature.shape) == 1:
targets.append(target)
video_ids.append(video_id)
features.append(feature)
elif len(feature.shape) == 2:
for embedding in feature:
targets.append(target)
video_ids.append(video_id)
features.append(embedding)
elif len(feature.shape) == 3:
for embedding in feature:
targets.append(target)
video_ids.append(video_id)
features.append(embedding)
else:
raise RuntimeError(
f"Provided feature has unexpected number of dimensions: {len(feature.shape)}")
target_matrix = np.array(targets, dtype=dtype).reshape((len(targets), 1))
feature_matrix = np.array(features, dtype=dtype)
return feature_matrix, target_matrix, video_ids
def get_predictions(model_type, model, features, targets, video_ids, aggregate_with=np.median):
if "svr" == model_type:
predictions = model.predict(features)
actuals = targets.ravel()
elif "gru" == model_type:
predictions = model.predict(features).ravel()
actuals = targets.ravel()
elif "bayesian_ridge" == model_type:
predictions = model.predict(features)
actuals = targets.ravel()
else:
raise ValueError(f"'{model_type}' is not a valid model type")
return aggregate_predictions(predictions, actuals, video_ids, aggregator=aggregate_with)
#############
# Using GRU #
#############
def build_gru_model(input_dim, gru_units, gru_dropout, lin_dropout, hidden_dim, seed):
input_layer = Input(shape=input_dim)
x = GRU(
units=gru_units,
dropout=gru_dropout,
recurrent_dropout=gru_dropout,
return_sequences=False
)(input_layer)
x = Dense(1024, activation="relu")(x)
x = Dropout(lin_dropout, seed=seed)(x)
x = Dense(512, activation="relu")(x)
x = Dropout(lin_dropout, seed=seed)(x)
x = Dense(256, activation="relu")(x)
x = Dropout(lin_dropout, seed=seed)(x)
output_layer = Dense(1, activation='sigmoid')(x)
return Model(input_layer, output_layer)
def train_gru(features_train,
targets_train,
features_valid,
targets_valid,
gru_units=64,
gru_dropout=0.75,
lin_dropout=0.25,
hidden_dim=1024,
learning_rate=1e-3,
num_epochs=15,
batch_size=32,
verbose=False,
seed=1):
tf.random.set_seed(seed)
input_dim = features_train[0].shape
print("input dimensions:", input_dim) if verbose else 0
print("hidden dimension:", hidden_dim) if verbose else 0
model = build_gru_model(
input_dim=input_dim,
gru_units=gru_units,
gru_dropout=gru_dropout,
lin_dropout=lin_dropout,
hidden_dim=hidden_dim,
seed=seed
)
optimizer = Adam(lr=learning_rate, decay=learning_rate / num_epochs)
model.compile(
loss="mean_squared_error",
optimizer=optimizer,
metrics=["mse", "mae", "mape"]
)
early_stopping_monitor = EarlyStopping(
monitor="val_loss",
patience=num_epochs // 5,
verbose=verbose,
restore_best_weights=True
)
H = model.fit(features_train, targets_train,
validation_data=(features_valid, targets_valid),
epochs=num_epochs,
shuffle=False,
batch_size=32,
use_multiprocessing=True,
workers=8,
callbacks=[early_stopping_monitor],
verbose=False)
train_losses = H.history["loss"]
valid_losses = H.history["val_loss"]
return model, train_losses, valid_losses
#############
# Using SVR #
#############
def train_svr(features_train, targets_train):
model = SVR(kernel='rbf', C=0.1, epsilon=0.001, gamma='scale')
model.fit(features_train, targets_train.ravel())
return model
#######################
# Using BayesianRidge #
#######################
def train_bayesian_ridge(features_train, targets_train):
model = BayesianRidge()
model.fit(features_train, targets_train.ravel())
return model
def train_model(model_type, features_train, targets_train, features_valid, targets_valid, model_parameters):
np.random.seed(model_parameters["random_seed"])
if "svr" == model_type:
model = train_svr(features_train, targets_train)
elif "gru" == model_type:
model, train_losses, valid_losses = train_gru(
features_train, targets_train, features_valid, targets_valid,
hidden_dim=model_parameters["hidden_dim"],
num_epochs=model_parameters["num_epochs"],
gru_units=model_parameters["gru_units"],
batch_size=model_parameters["batch_size"],
learning_rate=model_parameters["learning_rate"],
verbose=True,
gru_dropout=model_parameters["gru_dropout"],
)
elif "bayesian_ridge" == model_type:
model = train_bayesian_ridge(features_train, targets_train)
else:
raise ValueError(f"'{model_type}' is not a valid model type")
return model