forked from great1001/MyHeyGen
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathxtts_ft.py
330 lines (277 loc) · 13.3 KB
/
xtts_ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
import csv
import json
import torch
import argparse
import subprocess
from pathlib import Path
from trainer import Trainer, TrainerArgs
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
from TTS.utils.manage import ModelManager
from core.helpers import (
merge_voices
)
from moviepy.video.io.VideoFileClip import VideoFileClip
from core.dereverb import MDXNetDereverb
from core.audio_pre import AudioPre
from pydub import AudioSegment
from core.whisperx.asr import load_model, load_audio
from core.whisperx.alignment import load_align_model, align
from core.whisperx.diarize import DiarizationPipeline, assign_word_speakers
with open('config.json', 'r') as f:
token_config = json.load(f)
DEVICE_TYPE = 'cuda' if torch.cuda.is_available() else 'cpu'
LANGS = ['en', 'es', 'fr', 'de', 'it', 'pt', 'pl', 'tr', 'ru', 'nl', 'cs', 'ar', 'zh-cn', 'ja','hu','ko']
def transcribe_audio_extended(audio_file):
whisper = load_model('large-v2', device=DEVICE_TYPE, compute_type='int8')
diarize_model = DiarizationPipeline(use_auth_token=token_config['HF_TOKEN'],device=DEVICE_TYPE)
audio = load_audio(audio_file)
batch_size = 16
while 1:
try:
result = whisper.transcribe(audio, batch_size=batch_size,chunk_size=15)
except RuntimeError:
batch_size //= 2
if batch_size == 0:
raise("audio too long to translate,limit in >30mins")
else:
print("reset whisper batch_size={}".format(batch_size))
continue
break
language = result['language']
model_a, metadata = load_align_model(language_code=language, device=DEVICE_TYPE)
result = align(result['segments'], model_a, metadata, audio, DEVICE_TYPE, return_char_alignments=False)
print("diarizing ... wait moment")
diarize_segments = diarize_model(audio)
result = assign_word_speakers(diarize_segments, result)
whisper, diarize_model,model_a = (None,None,None)
del whisper, diarize_model,model_a
torch.cuda.empty_cache()
return result['segments'], language
def gen_ft_dataset(original_audio_file, is_audio_h5 = True):
ft_dataset_path = Path(original_audio_file).parent.joinpath("ft_dataset")
subprocess.call("rm -rf {}".format(ft_dataset_path), shell=True)
Path.mkdir(ft_dataset_path,parents=True, exist_ok=True)
wavs_path = Path(ft_dataset_path).joinpath("wavs")
Path.mkdir(wavs_path,parents=True, exist_ok=True)
csv_path = ft_dataset_path.joinpath("metadata.csv")
## remove noise
if is_audio_h5:
print("enable H5 for splitting vocal and bgm")
audio_pre = AudioPre(10)
else:
audio_pre = MDXNetDereverb(15)
audio_pre_out = audio_pre.split(original_audio_file)
voice_audio = AudioSegment.from_file(audio_pre_out['voice_file'], format='wav')
speakers, lang = transcribe_audio_extended(audio_pre_out['voice_file'])
merged_voices = merge_voices(speakers, voice_audio)
num = 0
for i,speaker in enumerate(speakers):
if 'id' in speaker:
voice = merged_voices[speaker['id']]
else:
voice = voice_audio[speaker['start'] * 1000: speaker['end'] * 1000]
## save .wav splited
voice_wav_name = 'ft_xtts_{}'.format(i)
voice_wav_path = wavs_path.joinpath('{}.wav'.format(voice_wav_name))
voice.export(voice_wav_path, format='wav')
text = speaker['text']
## generate meatadata.csv
with open(csv_path, "a", newline='', encoding='utf-8') as f:
writer = csv.writer(f,delimiter='|')
writer.writerow([voice_wav_name,text,text])
num += 1
if num > 10:
train_num = int(num * 0.9)
val_num = num - train_num
else:
train_num = num - 1
val_num = 1
csv_shuf_path = csv_path.parent.joinpath('metadata_shuf.csv')
csv_train_path = csv_path.parent.joinpath('metadata_train.csv')
csv_val_path = csv_path.parent.joinpath('metadata_val.csv')
commad = "shuf {} > {} && head -n {} {} > {} && tail -n {} {} > {}\
".format(csv_path,csv_shuf_path,train_num,csv_shuf_path
,csv_train_path,val_num,csv_shuf_path,csv_val_path)
subprocess.call(commad, shell=True)
return os.path.join(ft_dataset_path), lang
def finetune_xtts(speaker_name,speaker_filename,finetune_workpalce,batch_size, is_gen_dataset=1,is_audio_h5=True):
print("[Step 1] split audio and generate xtts format datasets")
original_audio_file = Path(speaker_filename).parent.joinpath("audio_from_video.wav")
if is_gen_dataset == 1:
if "mp4" in speaker_filename:
orig_clip = VideoFileClip(speaker_filename)
orig_clip.audio.write_audiofile(original_audio_file, codec='pcm_s16le')
else:
original_audio_file = speaker_filename
ft_dataset_path,lang = gen_ft_dataset(original_audio_file)
torch.save((ft_dataset_path,lang), os.path.join(ft_dataset_path,"dataset.pt"))
else:
ft_dataset_path = Path(original_audio_file).parent.joinpath("ft_dataset")
ft_dataset_path,_,lang = torch.load(os.path.join(ft_dataset_path,"dataset.pt"))
if "zh" in lang:
lang = "zh-cn"
if lang not in LANGS:
raise("language should be in {}".format(str(LANGS)))
print("[Step 2] finetune xtts model for enhance custom speaker's voice")
# Logging parameters
RUN_NAME = "{}_GPT_XTTS_v2.0_LJSpeech_FT".format(speaker_name)
PROJECT_NAME = "{}_XTTS_trainer".format(speaker_name)
DASHBOARD_LOGGER = "tensorboard"
LOGGER_URI = None
# Set here the path that the checkpoints will be saved. Default: ./run/training/
OUT_PATH = os.path.join(finetune_workpalce, "finetuning")
# Training Parameters
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False
START_WITH_EVAL = True # if True it will star with evaluation
BATCH_SIZE = batch_size # set here the batch size
GRAD_ACUMM_STEPS = 252 // BATCH_SIZE # set here the grad accumulation steps
# Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly.
# Define here the dataset that you want to use for the fine-tuning on.
config_dataset = BaseDatasetConfig(
formatter="ljspeech",
dataset_name="ljspeech",
path=ft_dataset_path,
meta_file_train = os.path.join(ft_dataset_path,'metadata_train.csv'),
meta_file_val = os.path.join(ft_dataset_path,'metadata_val.csv'),
language=lang
)
# Add here the configs of the datasets
DATASETS_CONFIG_LIST = [config_dataset]
# Define the path where XTTS v2.0.1 files will be downloaded
CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v2.0_original_model_files/")
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)
# DVAE files
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"
# Set the path to the downloaded files
DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))
# download DVAE files if needed
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
print(" > Downloading DVAE files!")
ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)
# Download XTTS v2.0 checkpoint if needed
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json"
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth"
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK)) # vocab.json file
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK)) # model.pth file
# download XTTS v2.0 files if needed
if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT):
print(" > Downloading XTTS v2.0 files!")
ModelManager._download_model_files(
[TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)
# Training sentences generations
SPEAKER_REFERENCE = [
os.path.join(ft_dataset_path,"wavs/ft_xtts_1.wav") # speaker reference to be used in training test sentences
]
LANGUAGE = config_dataset.language
test_sentences_dict = {
"en": "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
"zh-cn": "开发这个功能掉了好多头发,希望你们喜欢"
}
# init args and config
model_args = GPTArgs(
max_conditioning_length=132300, # 6 secs
min_conditioning_length=66150, # 3 secs
debug_loading_failures=False,
max_wav_length=255995, # ~11.6 seconds
max_text_length=200,
mel_norm_file=MEL_NORM_FILE,
dvae_checkpoint=DVAE_CHECKPOINT,
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune
tokenizer_file=TOKENIZER_FILE,
gpt_num_audio_tokens=1026,
gpt_start_audio_token=1024,
gpt_stop_audio_token=1025,
gpt_use_masking_gt_prompt_approach=True,
gpt_use_perceiver_resampler=True,
)
# define audio config 22050
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
# training parameters config
config = GPTTrainerConfig(
output_path=OUT_PATH,
model_args=model_args,
run_name=RUN_NAME,
project_name=PROJECT_NAME,
run_description="""
GPT XTTS training
""",
dashboard_logger=DASHBOARD_LOGGER,
logger_uri=LOGGER_URI,
audio=audio_config,
batch_size=BATCH_SIZE,
batch_group_size=48,
eval_batch_size=BATCH_SIZE,
num_loader_workers=8,
eval_split_max_size=256,
print_step=50,
plot_step=100,
log_model_step=1000,
save_step=10000,
save_n_checkpoints=1,
save_checkpoints=True,
# target_loss="loss",
print_eval=False,
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
optimizer="AdamW",
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
lr=5e-06, # learning rate
lr_scheduler="MultiStepLR",
# it was adjusted accordly for the new step scheme
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
test_sentences=[
{
"text": test_sentences_dict[LANGUAGE],
"speaker_wav": SPEAKER_REFERENCE,
"language": LANGUAGE,
}
],
)
# init the model from config
model = GPTTrainer.init_from_config(config)
# load training samples
train_samples, eval_samples = load_tts_samples(
DATASETS_CONFIG_LIST,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init the trainer and 🚀
trainer = Trainer(
TrainerArgs(
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
skip_train_epoch=False,
start_with_eval=START_WITH_EVAL,
grad_accum_steps=GRAD_ACUMM_STEPS,
),
config,
output_path=OUT_PATH,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Finetune xtts model for custom speaker')
parser.add_argument('speaker_name', help="name your custom speaker")
parser.add_argument('speaker_filename', help="the abslute path to speaker file which contant the speaker's quality voice, can be .mp4 or .wav")
parser.add_argument('finetune_workpalce', help='the abslute path to save model finetuned, available cache bigger is better')
parser.add_argument('batch_size',type=int,default=3, help='custom the finetuing batch_size')
parser.add_argument('is_gen_dataset', type=int,default=1, help='the abslute path to save model finetuned, available cache bigger is better')
parser.add_argument('--is_audio_h5',type=bool,default=True, help='')
args = parser.parse_args()
finetune_xtts(
speaker_name = args.speaker_name,
speaker_filename=args.speaker_filename,
finetune_workpalce=args.finetune_workpalce,
batch_size=args.batch_size,
is_gen_dataset = args.is_gen_dataset,
is_audio_h5 = args.is_audio_h5
)