-
Notifications
You must be signed in to change notification settings - Fork 0
/
slides.js
797 lines (775 loc) · 26.9 KB
/
slides.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
import React from "react";
import {
Deck,
Slide,
Heading,
Text,
Link,
Image,
Appear,
CodePane,
List,
ListItem,
Markdown
} from "spectacle";
import { InlineMath, BlockMath } from 'react-katex';
import { VerticalAlign, HorizontalAlign, JustifyAlign, Divider } from '../containers/layout'
import { SimpleWave, MyDropZone } from '../components/simple_component'
import 'katex/dist/katex.min.css';
import qr from '../static/img/qr.png'
import agua_wav from '../static/wav/01_agua.wav'
import A440 from '../static/wav/02_A_440.wav'
import voz_agua from '../static/img/01_voz_agua.png'
import voz_agua_zoom from '../static/img/01_voz_agua_zoom.png'
import voz_agua_quantization from '../static/img/01_voz_agua_quantization.png'
import A440_piano from '../static/wav/02_A_440_piano.wav'
import A_440_piano_fourier from '../static/img/04_A_440_piano_fourier.png'
import A_440_piano_fourier_with_harmonics from '../static/img/04_A_440_piano_fourier_with_harmonics.png'
import a_section_fourier_transform from '../static/img/05_a_section_fourier_transform.png'
import male_a_spa from '../static/wav/05_male_a_spa.wav'
import aparato_fonador from '../static/img/05_aparato_fonador.png'
import male_a_spa_with_spectogram from '../static/img/05_male_a_spa_with_spectogram.png'
import preemphasis from '../static/img/07_preemphasis.png'
import windowed_frame from '../static/img/08_windowed_frame.png'
import window_signals from '../static/img/08_window_signals.png'
import window_signals_real_audio from '../static/img/08_window_signals_real_audio.png'
import filterbanks from '../static/img/09_filterbanks.png'
import mfcc_diagram from '../static/img/09_mfcc.png'
import simplified_fe from '../static/img/10_simplified_fe.png'
import vq from '../static/img/11_vq.png'
import gmm from '../static/img/12_gmm.png'
import AFI from '../static/img/06_AFI.png'
import queremos_redes from '../static/img/14_queremos_redes.jpg'
import deepspeech_architecture from '../static/img/15_deepspeech_architecture.png'
import donde_esta_la_data from '../static/img/20_donde_esta_la_data.gif'
const fourier = `
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
frequency, wave = wavfile.read("A_440_piano.wav")
fourier = np.fft.fft(wave)
plt.plot(fourier[:int(len(fourier)/2)])
`;
const axvlinesFourier = `
plt.axvline(440,color="red")
plt.axvline(440*2,color="red")
plt.axvline(440*3,color="red")
plt.axvline(440*4,color="red")
plt.axvline(440*5,color="red")
plt.axvline(440*6,color="red")
`;
const preemphasisPython = `
np.append(wave[0], wave[1:]- 0.95*wave[:-1])
`;
const windowingPython = `
frame_size = int(A440_freq*0.025)
frame = A440[:frame_size]
window =signal.windows.hamming(frame_size)
windowed_frame = frame*window
`;
const triangularFilter = `
fbank = np.zeros([number_of_filters, nfft])
for i in range(0, number_of_filters):
for j in range(int(b[i]), int(b[i+1])):
fbank[i,j] = (j-b[i]) / (b[i+1] - b[i])
for j in range(int(b[i+1]), int(b[i+2])):
fbank[i,j] = (b[i+2] - j) / (b[i+2] - b[i+1])
`;
const plotTriangularFilter = `
plt.plot(fbank[0])
plt.plot(fbank[4])
plt.plot(fbank[9])
...
plt.plot(fbank[34])
plt.plot(fbank[39])
`;
const mfccPlainPython = `
np.dot(
np.fft.ifft(
np.log(
np.absolute(
np.fft.fft(
frame_real_wave*window
)
)
)
),
fbank.T
)
`;
const kMeans = `
transcription = "agua"
num_clusters = len(set(transcription)) + 1
kmeans = KMeans(n_clusters=num_clusters)
results = kmeans.fit(mfccs)
`;
const gmmPython = `
transcription = "agua"
num_clusters = len(set(transcription)) + 1
gmm = mixture.GaussianMixture(n_components=num_clusters)
gmm.fit(mfccs)
`;
const mexbet = `
Consonantes|Labiales|Labiodentales|Dentales|Alveolares|Palatales|Alveolares
-|-|-|-|-|-|-
Oclusivos Sordos|p||t|||k
Oclusivos Sonoros|b||d|||g
Africado Sordo|||||tS|
Fricativos Sordos||f||s||x
Fricativos Sonoros|||||Z|
Nasales|m|||n|n~|
Lateral||||l||
Vibrantes||||r( r ||
`;
const mexbetVowels = `
Vocales|Anteriores|Media|Posteriores
-|-|-|-
Cerradas|i||u
Medias|e||o
Abierta||a|
`;
const data = `
Resource name|URL|Licence|Annotation|Length
-|-|-|-|-|
CIEMPIESS|[ciempiess.org](http://www.ciempiess.org/downloads)|CC v4.0| Utterance | 17h
DIMEx100|[turing.iimas.unam.mx](http://turing.iimas.unam.mx/~luis/DIME/CORPUS-DIMEX.html)| - |Phonetic|5h
VoxForge|[VoxForge.org](voxforge.org)| GPL | Utterance | 50+
Common Voice|[voice.mozilla.org](https://voice.mozilla.org/en/datasets)| CC | Uterance | 27+
M-AILABS|[caito.de](https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/#more-242)| Custom | Uterance | 108
Heroico|[Open SLR 39](http://www.openslr.org/39/)| - | Uterance | 13
TEDx Spanish Corpus | [Open SLR 67](http://www.openslr.org/67/)| CC v4.0 | Utterance | 24
Google Language Resources AR, CH, CO, PR PR VE | [Open SLR 71](http://www.openslr.org/71/) | CC v4.0 | Uterance | -
LibriVox Spanish | [LDC2020S01](https://catalog.ldc.upenn.edu/LDC2020S01)|Librivox Open Licence|Uterance| 73
`;
const flaskRecognizer = `
@app.route("/recognize", methods=["GET", "POST"])
def recognize():
if request.method == "POST":
if "audio" not in request.files:
return ({"response": "You must specify an audio parameter with
a wav file"}, 400)
audio_file = sr.AudioFile(request.files["audio"])
with audio_file as source:
audio = recognizer.record(source)
hypothesis = recognizer.recognize_sphinx(
audio,
( 'isolated_words_spa/words1.cd_semi_200',
'isolated_words_spa/words1.lm.DMP',
'isolated_words_spa/words1.dic'
)
)
return {"reponse": "Audio processed", "hypothesis": hypothesis}
else:
return {"response": "Please use the POST method and specify audio
parameter with a wav file"}
`;
export const Slides = (props) => (
<Deck transition={['zoom','slide']} transitionDuration={800} {...props}>
<Slide>
<Heading size={1} textColor="secondary" >
Hablemos de Voz
</Heading>
<Heading size={3}>
Mauricio Collazos
</Heading>
</Slide>
<Slide>
<Image src={qr} />
<Link href="https://contraslash.github.io/hablemos-de-voz/">
<Text>https://contraslash.github.io/hablemos-de-voz/</Text>
</Link>
</Slide>
<Slide>
<Heading size="2" >
Posts
</Heading>
<List>
<Appear><ListItem><Link href="https://medium.com/contraslashsas/hablemos-de-voz-56bbfe725e62">Hablemos de Voz</Link></ListItem></Appear>
<Appear><ListItem><Link href="https://medium.com/contraslashsas/lets-talk-about-voice-e6f7f4dad156">Let’s talk about Voice</Link></ListItem></Appear>
</List>
</Slide>
<Slide>
<Heading size="2" >
Qué es la voz?
</Heading>
<Divider/>
<SimpleWave src={agua_wav}/>
</Slide>
<Slide>
<Heading size="2">
Una senal de Audio
</Heading>
</Slide>
<Slide>
<Heading size="2">
Una senal como esta?
</Heading>
<SimpleWave src={A440} />
<InlineMath math="y(t) = A sin(\omega t + \varphi )"/>
</Slide>
<Slide>
<Heading size="2">
Como representamos senales de audio?
</Heading>
<Appear><Image src={voz_agua} /></Appear>
<Appear><Image src={voz_agua_zoom} /></Appear>
<Appear><Image src={voz_agua_quantization} /></Appear>
</Slide>
<Slide>
<Heading size="2">
Cómo extraemos información de una senal?
</Heading>
<SimpleWave src={A440_piano} />
</Slide>
<Slide>
<Heading size="2">
Armonicos
</Heading>
<Image src="https://media.giphy.com/media/QW2KVsnNquaiI/giphy.gif"/>
</Slide>
<Slide>
<Heading size="2">
Armonicos
</Heading>
<Image src="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Overtone.jpg/800px-Overtone.jpg"/>
<Link href="https://en.wikipedia.org/wiki/Overtone">
<Text>
https://en.wikipedia.org/wiki/Overtone
</Text>
</Link>
</Slide>
<Slide>
<Heading size="2">
Fourier
</Heading>
<InlineMath math="f(x) = \frac{1}{2} \, a_{0} + \sum_{n=1}^{\infty} \left[
a_{n}\,\boldsymbol{\cos} (n\,x) + b_{n} \,\boldsymbol{\sin} (n\,x) \right]"/>
<Divider/>
<Link href="https://www.youtube.com/watch?v=spUNpyF58BY">
<Text>
Pero ¿qué es la Transformada de Fourier? Una introducción visual
</Text>
</Link>
</Slide>
<Slide>
<Heading size="2">
Fourier
</Heading>
<CodePane
lang="python"
source={fourier}
margin="20px auto"
/>
<Image src={A_440_piano_fourier} />
</Slide>
<Slide>
<Heading size="2">
Fourier
</Heading>
<CodePane
lang="python"
source={axvlinesFourier}
margin="20px auto"
/>
<Image src={A_440_piano_fourier_with_harmonics}/>
</Slide>
<Slide>
<Heading size="2">
Y un piano que tiene que ver con la voz?
</Heading>
</Slide>
<Slide>
<Heading size="2">
Aparato fonador
</Heading>
<Image src={aparato_fonador}/>
<Link href="http://irenemena99.blogspot.com/2016/02/aparato-fonador.html">
<Text>
http://irenemena99.blogspot.com/2016/02/aparato-fonador.html
</Text>
</Link>
</Slide>
<Slide>
<Heading size="2">
Todos digan A
</Heading>
<SimpleWave src={male_a_spa} />
<Image src={a_section_fourier_transform} width="60%"/>
</Slide>
<Slide>
<Heading size="2">
Y finalmente llegamos a un espectrograma
</Heading>
<Image src={male_a_spa_with_spectogram}/>
</Slide>
<Slide>
<Heading size="2">
Formantes Vocalicos para el espanol
</Heading>
<Image src="https://upload.wikimedia.org/wikipedia/commons/f/fa/Spanish_Vowel_Formants_Bradlow1995.png"/>
<Link href="https://es.wikipedia.org/wiki/Formante">
<Text>
https://es.wikipedia.org/wiki/Formante
</Text>
</Link>
</Slide>
<Slide>
<Heading size="2">
Sistema auditivo
</Heading>
<Image src="https://838dts3d6s-flywheel.netdna-ssl.com/wp-content/uploads/2014/03/Screen-Shot-2017-06-12-at-4.39.50-PM-1.png" width="60%"/>
<Link href="https://ncbegin.org/es/el-sistema-auditivo/">
<Text>
https://ncbegin.org/es/el-sistema-auditivo/
</Text>
</Link>
</Slide>
<Slide>
<Heading size="2">
Extraccion de caracteristicas
</Heading>
<List>
<Appear><ListItem>Mel Frequency Cepstral Coefficients (MFCC)</ListItem></Appear>
<Appear><ListItem>Perceptual Linear Prediction (PLP)</ListItem></Appear>
<Appear><ListItem>Linear Frequency Cepstral Coefficients (LFCC)</ListItem></Appear>
<Appear><ListItem>Power Normalized Cepstral Coefficients (PNCC)</ListItem></Appear>
<Appear><ListItem>Wavelet Package Features (WPF)</ListItem></Appear>
<Appear><ListItem>Subband-Based Cepstrap Parameters (SBC)</ListItem></Appear>
<Appear><ListItem>Mixed Wavelet Packet Advances Combinational Encoder (MWP-ACE)</ListItem></Appear>
</List>
</Slide>
<Slide>
<Heading size="2">
MFCC
</Heading>
<Appear>
<Heading size="3">
Preemfasis
</Heading>
</Appear>
<Appear>
<Text>
<InlineMath math="y[n] = x[n] - \alpha x[n-1] | 0.9 \le \alpha \le 1.0"/>
</Text>
</Appear>
<Appear>
<CodePane
lang="python"
source={preemphasisPython}
margin="20px auto"
/>
</Appear>
<Appear>
<Image src={preemphasis}/>
</Appear>
</Slide>
<Slide>
<Heading size="2">
Windowing
</Heading>
<BlockMath math="y[n] = w[n]s[n]"/>
<Appear>
<div>
<Text>
Ventana Rectangular
</Text>
<BlockMath math="
w[n]= \left\{ \begin{array}{lc}
1 & 0 \leq n \le L-1 \\
\\ 0 & n \lt 0 | n \gt L
\end{array}
\right."/>
</div>
</Appear>
<Appear>
<div>
<Text>
Ventana de Hamming
</Text>
<BlockMath math="
w[n]= \left\{ \begin{array}{lc}
0.54 - 0.46 cos(\frac{2 \pi n}{L}) & 0 \leq n \le L-1 \\
\\ 0 & n \lt 0 | n \gt L
\end{array}
\right."/>
</div>
</Appear>
</Slide>
<Slide>
<Heading size="2">
Windowing
</Heading>
<CodePane
lang="python"
source={windowingPython}
/>
<Appear>
<Image src={window_signals}/>
</Appear>
</Slide>
<Slide>
<Heading size="2">
Windowing
</Heading>
<Image src={windowed_frame}/>
</Slide>
<Slide>
<Heading size="2">
Y en el audio real
</Heading>
<Image src={window_signals_real_audio}/>
</Slide>
<Slide>
<Heading size="2">
Filtros Triangulares
</Heading>
<BlockMath math="
H_m[k]= \left\{ \begin{array}{lc}
0 & k \lt f[m-1] \\
\frac{k-f[m-1]}{f[m]-f[m-1]} & f[m-1] \le k \le f[m] \\
\frac{f[m+1]-k}{f[m+1]-f[m]} & f[m] \le k \le f[m+1] \\
0 & k > f[m+1]
\end{array}
\right."/>
<Appear>
<CodePane
lang="python"
source={triangularFilter}
/>
</Appear>
</Slide>
<Slide>
<Heading size="2">
Filtros Triangulares
</Heading>
<CodePane
lang="python"
source={plotTriangularFilter}
/>
<Image src={filterbanks} width="70%"/>
</Slide>
<Slide>
<Heading size="2">
Cepstrum
</Heading>
<BlockMath math="
c[n] = \sum_{n=0}^{N-1}log(\left| \sum _{n=0}^{N-1}x[n] e^{-j\frac{2 \pi}{N}kn}
\right|)e^{j\frac{2 \pi}{N}kn}"/>
</Slide>
<Slide>
<Heading size="2">
MFCC
</Heading>
<Image src={mfcc_diagram}/>
</Slide>
<Slide>
<Heading size="2">
Y eso en Python como es?
</Heading>
<CodePane
lang="python"
source={mfccPlainPython}
/>
</Slide>
<Slide>
<Heading size="4">
Pero yo no tengo tiempo de ponerme a implementar extractores de caracteristicas
</Heading>
<List>
<Appear>
<ListItem>
<Link href="https://librosa.github.io/librosa/generated/librosa.feature.mfcc.html">
LibRosa
</Link>
</ListItem>
</Appear>
<Appear>
<ListItem>
<Link href="https://github.com/jameslyons/python_speech_features">
Speech Features
</Link>
</ListItem>
</Appear>
<Appear>
<ListItem>
<Link href="https://github.com/MycroftAI/sonopy">
Sonopy
</Link>
</ListItem>
</Appear>
<Appear>
<ListItem>
<Link href="https://github.com/astorfi/speechpy">
SpeechPy
</Link>
</ListItem>
</Appear>
<Appear>
<ListItem>
<Link href="https://github.com/ddbourgin/numpy-ml">
Numpy ML
</Link>
</ListItem>
</Appear>
<Appear>
<ListItem>
<Link href="https://github.com/gionanide/Speech_Signal_Processing_and_Classification">
Speech Signal Processing and Classification
</Link>
</ListItem>
</Appear>
</List>
</Slide>
<Slide>
<Heading size="2">
Y Porque tan emocionado?
</Heading>
<Image src={simplified_fe}/>
</Slide>
<Slide>
<Heading size="2">
AX = b
</Heading>
<Appear><Heading size="4">Aja, y cual b</Heading></Appear>
</Slide>
<Slide>
<Heading size="2">
Un K-Means despues
</Heading>
<CodePane
source={kMeans}
lang="python"
/>
<Image src={vq}/>
</Slide>
<Slide>
<Heading size="2">
GMM
</Heading>
<Appear>
<Text>
<BlockMath math="
f(x|\mu,\Sigma) =\sum_{k=1}^{M}{c_k\frac{1}{\sqrt{2\pi|\Sigma_k|}}e^{(x-\mu_k)^T\Sigma^{-1}(x-\mu_k)}}
"
/>
</Text>
</Appear>
</Slide>
<Slide>
<Heading size="2">
GMM
</Heading>
<CodePane
source={gmmPython}
lang="python"
/>
<Image src={gmm}/>
</Slide>
<Slide>
<Heading size="2">
Muy bien con las ondas, y el lenguaje que?
</Heading>
</Slide>
<Slide>
<Heading size="2">
Alfabeto Fonetico Internacional
</Heading>
<Image src={AFI} />
<Link href="https://es.wikipedia.org/wiki/Alfabeto_Fon%C3%A9tico_Internacional">
<Text>
https://es.wikipedia.org/wiki/Alfabeto_Fon%C3%A9tico_Internacional
</Text>
</Link>
</Slide>
<Slide>
<Heading size="2">
Aparato fonador
</Heading>
<Image src={aparato_fonador}/>
<Link href="http://irenemena99.blogspot.com/2016/02/aparato-fonador.html">
<Text>
http://irenemena99.blogspot.com/2016/02/aparato-fonador.html
</Text>
</Link>
</Slide>
<Slide>
<Heading size="2">
<Link href="http://www.ciempiess.org/Alfabetos_Foneticos/Evolucion_de_MEXBET.html">MEXBET</Link>
</Heading>
<Markdown source={mexbet}/>
</Slide>
<Slide>
<Heading size="2">
MEXBET - Vocales
</Heading>
<Markdown source={mexbetVowels}/>
</Slide>
<Slide>
<Heading size="2">
Lexicon
</Heading>
</Slide>
<Slide>
<Heading size="2">
Modelo de Lenguaje
</Heading>
<Appear>
<Text>
<BlockMath math="P(w_1^n) = \prod_{k=1}^{n}{P(w_k|w_1^{k-1})}"/>
</Text>
</Appear>
</Slide>
<Slide>
<Heading size="2">
Generacion del modelo acustico con HMM
</Heading>
<List>
<Appear>
<ListItem>
<Link href="https://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm">
Entrenamiento con el Algoritmo Baum-Welch
</Link>
</ListItem>
</Appear>
<Appear>
<ListItem>
<Link href="https://en.wikipedia.org/wiki/Viterbi_algorithm">
Decodificacion con el Algoritmo de Viterbi
</Link>
</ListItem>
</Appear>
</List>
</Slide>
<Slide>
<Image src={queremos_redes}/>
</Slide>
<Slide>
<Heading size="2">
Redes Neuronales
</Heading>
<List>
<Appear>
<ListItem>
<Link href="https://github.com/mozilla/DeepSpeech">
Deep Speech
</Link>
</ListItem>
</Appear>
<Appear>
<ListItem>
<Link href="https://github.com/buriburisuri/speech-to-text-wavenet">
Speech to Text Wavenet
</Link>
</ListItem>
</Appear>
<Appear>
<ListItem>
<Link href="https://github.com/nl8590687/ASRT_SpeechRecognition">
ASRT Speech Recognition
</Link>
</ListItem>
</Appear>
<Appear>
<ListItem>
<Link href="https://github.com/PaddlePaddle/DeepSpeech">
Deep Speech 2
</Link>
</ListItem>
</Appear>
</List>
</Slide>
<Slide>
<Heading size="2">
Arquitectura de DeepSpeech
</Heading>
<Image src={deepspeech_architecture}/>
<Link href="https://arxiv.org/abs/1412.5567">
Archive page
</Link>
<Divider height={"5vh"}/>
<Link href="https://www.youtube.com/watch?v=ZDgHS0wTYuo">
Deep Speech: Free(ing) Speech with Deep Learning
</Link>
</Slide>
<Slide>
<Image src={donde_esta_la_data}/>
</Slide>
<Slide>
<Markdown source={data}/>
<Link href="https://github.com/open-speech-org/openspeechresources">
https://github.com/open-speech-org/openspeechresources
</Link>
</Slide>
<Slide>
<Heading size="2">
Open Speech Corpus
</Heading>
<List>
<Appear><ListItem>Cuentos</ListItem></Appear>
<Appear><ListItem>Afasia</ListItem></Appear>
<Appear><ListItem>Palabras aisladas</ListItem></Appear>
</List>
<List>
<Appear>
<ListItem>
<Link href="https://play.google.com/store/apps/details?id=com.contraslash.android.openspeechcorpus">
Aplicacion movil
</Link>
</ListItem>
</Appear>
<Appear>
<ListItem>
<Link href="https://pypi.org/project/openspeechcorpus/">
CLI
</Link>
</ListItem>
</Appear>
</List>
</Slide>
<Slide>
<Image src="https://lh3.googleusercontent.com/XDvOFQGYiX12Lnhd6kKq4DzCqzlnI7YKCS5ZvQkZGat2uQpniCl9DYQSe_7nihgVRhI=w1440-h799-rw"/>
</Slide>
<Slide>
<Image src="https://lh3.googleusercontent.com/LARaD4yTgHpqg7ys9KvMkMiJUtDghwXBiK5L9lxHR_-r3J4-adCjWe3FjAi4ApLGRbU=w1440-h799-rw"/>
</Slide>
<Slide>
<Image src="https://lh3.googleusercontent.com/G6oQm-rQnyY9oMIynpLlXG7zKscQFkwMD20qpzEKFCUzYQIT_TviEDPr76r6Qq_crWI=w1440-h799-rw"/>
</Slide>
<Slide>
<Heading size="2">
Nada mas facil para comenzar?
</Heading>
</Slide>
<Slide>
<Heading size="2">
<Link href="https://pypi.org/project/SpeechRecognition/">
Speech Recognition
</Link>
</Heading>
<List>
<Appear><ListItem><Link href="http://cmusphinx.sourceforge.net/wiki/">CMU Sphinx</Link></ListItem></Appear>
<Appear><ListItem><Link href="https://cloud.google.com/speech/">Google Cloud Speech API</Link></ListItem></Appear>
<Appear><ListItem><Link href="https://wit.ai/">Wit.ai</Link></ListItem></Appear>
<Appear><ListItem><Link href="https://www.microsoft.com/cognitive-services/en-us/speech-api">Microsoft Bing Voice Recognition</Link></ListItem></Appear>
<Appear><ListItem><Link href="https://houndify.com/">Houndify API</Link></ListItem></Appear>
<Appear><ListItem><Link href="http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/speech-to-text.html">IBM Speech to Text</Link></ListItem></Appear>
<Appear><ListItem><Link href="https://snowboy.kitt.ai/">Snowboy Hotword Detection</Link></ListItem></Appear>
</List>
</Slide>
<Slide>
<CodePane
source={flaskRecognizer}
lang="python"
/>
</Slide>
<Slide>
<Image src="https://i.kym-cdn.com/entries/icons/original/000/028/021/work.jpg"/>
</Slide>
<Slide>
<Text >
Dar las gracias y huir
</Text>
<Image src="https://media.giphy.com/media/9rRacglGbs68E/giphy.gif"/>
</Slide>
</Deck>
);