forked from bchidamb/Jess-s_Angels
-
Notifications
You must be signed in to change notification settings - Fork 1
/
inputDatLibFM_converter2.py
63 lines (51 loc) · 2.05 KB
/
inputDatLibFM_converter2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import pandas as pd
import numpy as np
import os
import gc
# The whole goal of this file is to now convert our data into the format that is used for
# ratings.dat in the movielens dataset which is:
# UserID::MovieID::Rating::Timestamp
# once we do this, we can use a pearl script built into libFM to convert these ratings
# and then make predictions
# http://files.grouplens.org/datasets/movielens/ml-10m-README.html
# https://github.com/srendle/libfm
# http://www.libfm.org/libfm-1.42.manual.pdf
# wrote this function knowing what was inside of our files with our columns
def fileToLibfm_MU(fileName, label):
# MU data
print('Loading data', label,'mu...')
df = pd.read_csv(os.path.join('data', fileName))
# modify data fram to get rid of data we're not using
#del df['Unnamed: 0']
#del df['Unnamed: 0.1']
#del df['bin'] # from our bin stuff
#del df['Date Number']
df = df.astype('int32')
newFileName = label + '_libFM'
newFileLocation = "libfm/" + newFileName
print('Making new file', newFileName)
# make a new file the old fashion way
f = open(newFileLocation, "w+")
stringToAdd = ''
count = 0
for index, row in df.iterrows():
stringToAdd += str(row['User Number']) + "::" + str(row['Movie Number']) + "::" + str(row['Rating']) + '::' + str(row['Date Number']) #+ '\n'
count += 1
if count is 50000:
f.write(stringToAdd)
stringToAdd = ''
count = 0
else:
stringToAdd += '\n'
if stringToAdd is not '':
f.write(stringToAdd[:-1]) # need to take off last '\n'
f.close()
gc.collect()
print('Finished reading in data')
print('file processing done for', label, 'new file created', newFileLocation, '\n')
#fileToLibfm_MU('real_mu_qual_probe.csv', 'real_mu_qual_probe')
#fileToLibfm_MU('mu_val.csv', 'mu_val')
fileToLibfm_MU('real_mu_train.csv', 'real_mu_train')
#fileToLibfm_MU('mu_probe.csv', 'mu_probe')
#fileToLibfm_MU('mu_qual.csv', 'mu_qual')
#fileToLibfm_MU('mu_qual_val.csv', 'mu_qual_val')