forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
108 lines (92 loc) · 4.28 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Evaluation executable for detection models.
This executable is used to evaluate DetectionModels. Example usage:
./eval \
--logtostderr \
--checkpoint_dir=path/to/checkpoint_dir \
--eval_dir=path/to/eval_dir \
--pipeline_config_path=pipeline_config.pbtxt
"""
import functools
import os
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
from lstm_object_detection import evaluator
from lstm_object_detection import model_builder
from lstm_object_detection.inputs import seq_dataset_builder
from lstm_object_detection.utils import config_util
from object_detection.utils import label_map_util
tf.logging.set_verbosity(tf.logging.INFO)
flags = tf.app.flags
flags.DEFINE_boolean('eval_training_data', False,
'If training data should be evaluated for this job.')
flags.DEFINE_string('checkpoint_dir', '',
'Directory containing checkpoints to evaluate, typically '
'set to `train_dir` used in the training job.')
flags.DEFINE_string('eval_dir', '', 'Directory to write eval summaries to.')
flags.DEFINE_string('pipeline_config_path', '',
'Path to a pipeline_pb2.TrainEvalPipelineConfig config '
'file. If provided, other configs are ignored')
flags.DEFINE_boolean('run_once', False, 'Option to only run a single pass of '
'evaluation. Overrides the `max_evals` parameter in the '
'provided config.')
FLAGS = flags.FLAGS
def main(unused_argv):
assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
assert FLAGS.eval_dir, '`eval_dir` is missing.'
if FLAGS.pipeline_config_path:
configs = config_util.get_configs_from_pipeline_file(
FLAGS.pipeline_config_path)
else:
configs = config_util.get_configs_from_multiple_files(
model_config_path=FLAGS.model_config_path,
eval_config_path=FLAGS.eval_config_path,
eval_input_config_path=FLAGS.input_config_path)
pipeline_proto = config_util.create_pipeline_proto_from_configs(configs)
config_text = text_format.MessageToString(pipeline_proto)
tf.gfile.MakeDirs(FLAGS.eval_dir)
with tf.gfile.Open(os.path.join(FLAGS.eval_dir, 'pipeline.config'),
'wb') as f:
f.write(config_text)
model_config = configs['model']
lstm_config = configs['lstm_model']
eval_config = configs['eval_config']
input_config = configs['eval_input_config']
if FLAGS.eval_training_data:
input_config.external_input_reader.CopyFrom(
configs['train_input_config'].external_input_reader)
lstm_config.eval_unroll_length = lstm_config.train_unroll_length
model_fn = functools.partial(
model_builder.build,
model_config=model_config,
lstm_config=lstm_config,
is_training=False)
def get_next(config, model_config, lstm_config, unroll_length):
return seq_dataset_builder.build(config, model_config, lstm_config,
unroll_length)
create_input_dict_fn = functools.partial(get_next, input_config, model_config,
lstm_config,
lstm_config.eval_unroll_length)
label_map = label_map_util.load_labelmap(input_config.label_map_path)
max_num_classes = max([item.id for item in label_map.item])
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes)
if FLAGS.run_once:
eval_config.max_evals = 1
evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories,
FLAGS.checkpoint_dir, FLAGS.eval_dir)
if __name__ == '__main__':
tf.app.run()