forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
create_finetuning_data.py
413 lines (356 loc) · 15.8 KB
/
create_finetuning_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT finetuning task dataset generator."""
import functools
import json
import os
# Import libraries
from absl import app
from absl import flags
import tensorflow as tf
from official.nlp.bert import tokenization
from official.nlp.data import classifier_data_lib
from official.nlp.data import sentence_retrieval_lib
# word-piece tokenizer based squad_lib
from official.nlp.data import squad_lib as squad_lib_wp
# sentence-piece tokenizer based squad_lib
from official.nlp.data import squad_lib_sp
from official.nlp.data import tagging_data_lib
FLAGS = flags.FLAGS
# TODO(chendouble): consider moving each task to its own binary.
flags.DEFINE_enum(
"fine_tuning_task_type", "classification",
["classification", "regression", "squad", "retrieval", "tagging"],
"The name of the BERT fine tuning task for which data "
"will be generated.")
# BERT classification specific flags.
flags.DEFINE_string(
"input_data_dir", None,
"The input data dir. Should contain the .tsv files (or other data files) "
"for the task.")
flags.DEFINE_enum(
"classification_task_name", "MNLI", [
"AX", "COLA", "IMDB", "MNLI", "MRPC", "PAWS-X", "QNLI", "QQP", "RTE",
"SST-2", "STS-B", "WNLI", "XNLI", "XTREME-XNLI", "XTREME-PAWS-X"
], "The name of the task to train BERT classifier. The "
"difference between XTREME-XNLI and XNLI is: 1. the format "
"of input tsv files; 2. the dev set for XTREME is english "
"only and for XNLI is all languages combined. Same for "
"PAWS-X.")
# MNLI task-specific flag.
flags.DEFINE_enum("mnli_type", "matched", ["matched", "mismatched"],
"The type of MNLI dataset.")
# XNLI task-specific flag.
flags.DEFINE_string(
"xnli_language", "en",
"Language of training data for XNLI task. If the value is 'all', the data "
"of all languages will be used for training.")
# PAWS-X task-specific flag.
flags.DEFINE_string(
"pawsx_language", "en",
"Language of training data for PAWS-X task. If the value is 'all', the data "
"of all languages will be used for training.")
# XTREME classification specific flags. Only used in XtremePawsx and XtremeXnli.
flags.DEFINE_string(
"translated_input_data_dir", None,
"The translated input data dir. Should contain the .tsv files (or other "
"data files) for the task.")
# Retrieval task-specific flags.
flags.DEFINE_enum("retrieval_task_name", "bucc", ["bucc", "tatoeba"],
"The name of sentence retrieval task for scoring")
# Tagging task-specific flags.
flags.DEFINE_enum("tagging_task_name", "panx", ["panx", "udpos"],
"The name of BERT tagging (token classification) task.")
flags.DEFINE_bool("tagging_only_use_en_train", True,
"Whether only use english training data in tagging.")
# BERT Squad task-specific flags.
flags.DEFINE_string(
"squad_data_file", None,
"The input data file in for generating training data for BERT squad task.")
flags.DEFINE_string(
"translated_squad_data_folder", None,
"The translated data folder for generating training data for BERT squad "
"task.")
flags.DEFINE_integer(
"doc_stride", 128,
"When splitting up a long document into chunks, how much stride to "
"take between chunks.")
flags.DEFINE_integer(
"max_query_length", 64,
"The maximum number of tokens for the question. Questions longer than "
"this will be truncated to this length.")
flags.DEFINE_bool(
"version_2_with_negative", False,
"If true, the SQuAD examples contain some that do not have an answer.")
flags.DEFINE_bool(
"xlnet_format", False,
"If true, then data will be preprocessed in a paragraph, query, class order"
" instead of the BERT-style class, paragraph, query order.")
# XTREME specific flags.
flags.DEFINE_bool("only_use_en_dev", True, "Whether only use english dev data.")
# Shared flags across BERT fine-tuning tasks.
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string(
"train_data_output_path", None,
"The path in which generated training input data will be written as tf"
" records.")
flags.DEFINE_string(
"eval_data_output_path", None,
"The path in which generated evaluation input data will be written as tf"
" records.")
flags.DEFINE_string(
"test_data_output_path", None,
"The path in which generated test input data will be written as tf"
" records. If None, do not generate test data. Must be a pattern template"
" as test_{}.tfrecords if processor has language specific test data.")
flags.DEFINE_string("meta_data_file_path", None,
"The path in which input meta data will be written.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_string("sp_model_file", "",
"The path to the model used by sentence piece tokenizer.")
flags.DEFINE_enum(
"tokenization", "WordPiece", ["WordPiece", "SentencePiece"],
"Specifies the tokenizer implementation, i.e., whether to use WordPiece "
"or SentencePiece tokenizer. Canonical BERT uses WordPiece tokenizer, "
"while ALBERT uses SentencePiece tokenizer.")
flags.DEFINE_string(
"tfds_params", "", "Comma-separated list of TFDS parameter assigments for "
"generic classfication data import (for more details "
"see the TfdsProcessor class documentation).")
def generate_classifier_dataset():
"""Generates classifier dataset and returns input meta data."""
assert (FLAGS.input_data_dir and FLAGS.classification_task_name or
FLAGS.tfds_params)
if FLAGS.tokenization == "WordPiece":
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
processor_text_fn = tokenization.convert_to_unicode
else:
assert FLAGS.tokenization == "SentencePiece"
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
processor_text_fn = functools.partial(
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
if FLAGS.tfds_params:
processor = classifier_data_lib.TfdsProcessor(
tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn)
return classifier_data_lib.generate_tf_record_from_data_file(
processor,
None,
tokenizer,
train_data_output_path=FLAGS.train_data_output_path,
eval_data_output_path=FLAGS.eval_data_output_path,
test_data_output_path=FLAGS.test_data_output_path,
max_seq_length=FLAGS.max_seq_length)
else:
processors = {
"ax":
classifier_data_lib.AxProcessor,
"cola":
classifier_data_lib.ColaProcessor,
"imdb":
classifier_data_lib.ImdbProcessor,
"mnli":
functools.partial(
classifier_data_lib.MnliProcessor, mnli_type=FLAGS.mnli_type),
"mrpc":
classifier_data_lib.MrpcProcessor,
"qnli":
classifier_data_lib.QnliProcessor,
"qqp":
classifier_data_lib.QqpProcessor,
"rte":
classifier_data_lib.RteProcessor,
"sst-2":
classifier_data_lib.SstProcessor,
"sts-b":
classifier_data_lib.StsBProcessor,
"xnli":
functools.partial(
classifier_data_lib.XnliProcessor,
language=FLAGS.xnli_language),
"paws-x":
functools.partial(
classifier_data_lib.PawsxProcessor,
language=FLAGS.pawsx_language),
"wnli":
classifier_data_lib.WnliProcessor,
"xtreme-xnli":
functools.partial(
classifier_data_lib.XtremeXnliProcessor,
translated_data_dir=FLAGS.translated_input_data_dir,
only_use_en_dev=FLAGS.only_use_en_dev),
"xtreme-paws-x":
functools.partial(
classifier_data_lib.XtremePawsxProcessor,
translated_data_dir=FLAGS.translated_input_data_dir,
only_use_en_dev=FLAGS.only_use_en_dev)
}
task_name = FLAGS.classification_task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name](process_text_fn=processor_text_fn)
return classifier_data_lib.generate_tf_record_from_data_file(
processor,
FLAGS.input_data_dir,
tokenizer,
train_data_output_path=FLAGS.train_data_output_path,
eval_data_output_path=FLAGS.eval_data_output_path,
test_data_output_path=FLAGS.test_data_output_path,
max_seq_length=FLAGS.max_seq_length)
def generate_regression_dataset():
"""Generates regression dataset and returns input meta data."""
if FLAGS.tokenization == "WordPiece":
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
processor_text_fn = tokenization.convert_to_unicode
else:
assert FLAGS.tokenization == "SentencePiece"
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
processor_text_fn = functools.partial(
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
if FLAGS.tfds_params:
processor = classifier_data_lib.TfdsProcessor(
tfds_params=FLAGS.tfds_params, process_text_fn=processor_text_fn)
return classifier_data_lib.generate_tf_record_from_data_file(
processor,
None,
tokenizer,
train_data_output_path=FLAGS.train_data_output_path,
eval_data_output_path=FLAGS.eval_data_output_path,
test_data_output_path=FLAGS.test_data_output_path,
max_seq_length=FLAGS.max_seq_length)
else:
raise ValueError("No data processor found for the given regression task.")
def generate_squad_dataset():
"""Generates squad training dataset and returns input meta data."""
assert FLAGS.squad_data_file
if FLAGS.tokenization == "WordPiece":
return squad_lib_wp.generate_tf_record_from_json_file(
input_file_path=FLAGS.squad_data_file,
vocab_file_path=FLAGS.vocab_file,
output_path=FLAGS.train_data_output_path,
translated_input_folder=FLAGS.translated_squad_data_folder,
max_seq_length=FLAGS.max_seq_length,
do_lower_case=FLAGS.do_lower_case,
max_query_length=FLAGS.max_query_length,
doc_stride=FLAGS.doc_stride,
version_2_with_negative=FLAGS.version_2_with_negative,
xlnet_format=FLAGS.xlnet_format)
else:
assert FLAGS.tokenization == "SentencePiece"
return squad_lib_sp.generate_tf_record_from_json_file(
input_file_path=FLAGS.squad_data_file,
sp_model_file=FLAGS.sp_model_file,
output_path=FLAGS.train_data_output_path,
translated_input_folder=FLAGS.translated_squad_data_folder,
max_seq_length=FLAGS.max_seq_length,
do_lower_case=FLAGS.do_lower_case,
max_query_length=FLAGS.max_query_length,
doc_stride=FLAGS.doc_stride,
xlnet_format=FLAGS.xlnet_format,
version_2_with_negative=FLAGS.version_2_with_negative)
def generate_retrieval_dataset():
"""Generate retrieval test and dev dataset and returns input meta data."""
assert (FLAGS.input_data_dir and FLAGS.retrieval_task_name)
if FLAGS.tokenization == "WordPiece":
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
processor_text_fn = tokenization.convert_to_unicode
else:
assert FLAGS.tokenization == "SentencePiece"
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
processor_text_fn = functools.partial(
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
processors = {
"bucc": sentence_retrieval_lib.BuccProcessor,
"tatoeba": sentence_retrieval_lib.TatoebaProcessor,
}
task_name = FLAGS.retrieval_task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % task_name)
processor = processors[task_name](process_text_fn=processor_text_fn)
return sentence_retrieval_lib.generate_sentence_retrevial_tf_record(
processor, FLAGS.input_data_dir, tokenizer, FLAGS.eval_data_output_path,
FLAGS.test_data_output_path, FLAGS.max_seq_length)
def generate_tagging_dataset():
"""Generates tagging dataset."""
processors = {
"panx":
functools.partial(
tagging_data_lib.PanxProcessor,
only_use_en_train=FLAGS.tagging_only_use_en_train,
only_use_en_dev=FLAGS.only_use_en_dev),
"udpos":
functools.partial(
tagging_data_lib.UdposProcessor,
only_use_en_train=FLAGS.tagging_only_use_en_train,
only_use_en_dev=FLAGS.only_use_en_dev),
}
task_name = FLAGS.tagging_task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % task_name)
if FLAGS.tokenization == "WordPiece":
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
processor_text_fn = tokenization.convert_to_unicode
elif FLAGS.tokenization == "SentencePiece":
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
processor_text_fn = functools.partial(
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
else:
raise ValueError("Unsupported tokenization: %s" % FLAGS.tokenization)
processor = processors[task_name]()
return tagging_data_lib.generate_tf_record_from_data_file(
processor, FLAGS.input_data_dir, tokenizer, FLAGS.max_seq_length,
FLAGS.train_data_output_path, FLAGS.eval_data_output_path,
FLAGS.test_data_output_path, processor_text_fn)
def main(_):
if FLAGS.tokenization == "WordPiece":
if not FLAGS.vocab_file:
raise ValueError(
"FLAG vocab_file for word-piece tokenizer is not specified.")
else:
assert FLAGS.tokenization == "SentencePiece"
if not FLAGS.sp_model_file:
raise ValueError(
"FLAG sp_model_file for sentence-piece tokenizer is not specified.")
if FLAGS.fine_tuning_task_type != "retrieval":
flags.mark_flag_as_required("train_data_output_path")
if FLAGS.fine_tuning_task_type == "classification":
input_meta_data = generate_classifier_dataset()
elif FLAGS.fine_tuning_task_type == "regression":
input_meta_data = generate_regression_dataset()
elif FLAGS.fine_tuning_task_type == "retrieval":
input_meta_data = generate_retrieval_dataset()
elif FLAGS.fine_tuning_task_type == "squad":
input_meta_data = generate_squad_dataset()
else:
assert FLAGS.fine_tuning_task_type == "tagging"
input_meta_data = generate_tagging_dataset()
tf.io.gfile.makedirs(os.path.dirname(FLAGS.meta_data_file_path))
with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
writer.write(json.dumps(input_meta_data, indent=4) + "\n")
if __name__ == "__main__":
flags.mark_flag_as_required("meta_data_file_path")
app.run(main)