-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
139 lines (107 loc) · 3.44 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from argparse import ArgumentParser
from pathlib import Path
from benchmarks.moo_bb_func import get_bb_func
parser = ArgumentParser()
parser.add_argument("problem", type=str)
parser.add_argument("rnd", type=int)
parser.add_argument("n_calls", type=int)
parser.add_argument("-dim", default=3, type=int)
parser.add_argument("-kappa", default=1.96, type=float)
args = parser.parse_args()
# get initial points
import json
with open("moo_results/bb_init.json") as json_file:
x_init = json.load(json_file)[args.problem][str(args.rnd)]
# for the windfarm case we have a constraint problem
if args.problem == "Windfarm":
bb_func = get_bb_func(args.problem)
opt_core = bb_func.get_opt_core()
from entmoot_moo.optimizer import Optimizer
opt = Optimizer(
bb_func.bounds,
model="ENTING",
model_unc="BDD",
random_state=args.rnd,
kappa=args.kappa,
opt_core=opt_core
)
import numpy as np
for idx, x in enumerate(x_init):
print(f"{x[32:]}")
# tell solver initial points
next_y = bb_func(x)
opt.tell(x, next_y)
for _ in range(args.n_calls):
next_x = opt.ask()
next_x = np.asarray(next_x)
for idx, x in enumerate(next_x):
print(f"{idx}: {x}")
if isinstance(next_x[0], list):
next_y = [bb_func(x) for x in next_x]
for i, y in enumerate(next_y):
opt.tell(next_x[i], y)
else:
next_y = bb_func(next_x)
opt.tell(next_x, next_y)
data_x = opt.X
data_y = opt.y
# battery example requires certain constraints
elif args.problem == "Battery":
bb_func = get_bb_func(args.problem)
opt_core = bb_func.get_opt_core()
from entmoot_moo.optimizer import Optimizer
opt = Optimizer(
bb_func.bounds,
model="ENTING",
model_unc="BDD",
random_state=args.rnd,
kappa=args.kappa,
opt_core=opt_core
)
import numpy as np
for idx, x in enumerate(x_init):
print(f"{x}")
# tell solver initial points
next_y = bb_func(x)
opt.tell(x, next_y)
for _ in range(args.n_calls):
next_x = opt.ask()
next_x = np.asarray(next_x)
for idx, x in enumerate(next_x):
print(f"{idx}: {x}")
if isinstance(next_x[0], list):
next_y = [bb_func(x) for x in next_x]
for i, y in enumerate(next_y):
opt.tell(next_x[i], y)
else:
next_y = bb_func(next_x)
opt.tell(next_x, next_y)
data_x = opt.X
data_y = opt.y
# save results
from pathlib import Path
import os
# collect run info and results
file_name = "_".join([str(args.rnd), args.problem, "entmoot"]) + ".json"
res_dict = {
"algo": "entmoot",
"problem": args.problem,
"rnd": args.rnd,
"n_calls": args.n_calls,
"dim": args.dim,
"kappa": args.kappa
}
res_dict['data_y'] = []
res_dict['data_x'] = []
# format ndarray to serializable python objects
for itr in range(len(data_y)):
res_dict['data_y'].append([float(y) for y in data_y[itr]])
res_dict['data_x'].append([float(x) for x in data_x[itr]])
# create parent dir if it doesn't exist
parent_path = Path("moo_results") / (args.problem + '_' + str(args.n_calls))
if not os.path.isdir(parent_path):
os.mkdir(parent_path)
# save file
full_path = parent_path / file_name
with open(full_path, 'w') as json_file:
json.dump(res_dict, json_file, indent=4)