-
Notifications
You must be signed in to change notification settings - Fork 22
/
run.py
executable file
·341 lines (289 loc) · 16.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import torch
import torchvision.utils as vutils
from tensorboardX import SummaryWriter
import torch.nn.functional as F
import torch.distributed as dist
import torch.multiprocessing as mp
import json
import time
import numpy
import os
import sys
import collections
import numpy as np
import gc
import math
import random
from models import create_model
from utils import *
from ckpt_manager import CKPT_Manager
# device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
#torch.backends.cudnn.enabled = False
#torch.backends.cudnn.benchmark = False
class Trainer():
def __init__(self, config, rank = -1):
self.rank = rank
if config.dist:
self.pg = dist.new_group(range(dist.get_world_size()))
self.config = config
if self.rank <= 0: self.summary = SummaryWriter(config.LOG_DIR.log_scalar)
## model
self.model = create_model(config)
# if self.rank <= 0 and config.is_verbose:
# self.model.print()
## checkpoint manager
self.ckpt_manager = CKPT_Manager(config.LOG_DIR.ckpt, config.mode, config.max_ckpt_num, is_descending = True)
## training vars
self.states = ['train', 'valid']
# self.states = ['valid', 'train']
self.max_epoch = int(math.ceil(config.total_itr / self.model.get_itr_per_epoch('train')))
if self.rank <= 0: print(toGreen('Max Epoch: {}'.format(self.max_epoch)))
self.epoch_range = np.arange(1, self.max_epoch + 1)
self.err_epoch = {'train': {}, 'valid': {}}
self.norm = torch.tensor(0).to(torch.device('cuda'))
self.lr = 0
if self.config.resume is not None:
if self.rank <= 0: print(toGreen('Resume Trianing...'))
if self.rank <= 0: print(toRed('\tResuming {}..'.format(self.config.resume)))
resume_state = self.ckpt_manager.resume(self.model.get_network(), self.config.resume, self.rank)
self.epoch_range = np.arange(resume_state['epoch'] + 1, self.max_epoch + 1)
self.model.resume_training(resume_state)
def train(self):
torch.backends.cudnn.benchmark = True
if self.rank <= 0 : print(toYellow('\n\n=========== TRAINING START ============'))
for epoch in self.epoch_range:
if self.rank <= 0 and epoch == 1:
if self.config.resume is None:
self.ckpt_manager.save(self.model.get_network(), self.model.get_training_state(0), 0, score = [1e-8, 1e8])
is_log = epoch == 1 or epoch % self.config.write_ckpt_every_epoch == 0 or epoch > self.max_epoch - 10
if self.config.resume is not None and epoch == int(self.config.resume) + 1:
is_log = True
for state in self.states:
epoch_time = time.time()
if state == 'train':
self.model.train()
self.iteration(epoch, state, is_log)
elif is_log:
self.model.eval()
with torch.no_grad():
self.iteration(epoch, state, is_log)
if state == 'valid' or state == 'train' : # add "or state == 'train" if you want to save train logs
if is_log:
#if state == 'train':
if config.dist: dist.all_reduce(self.norm, op=dist.ReduceOp.SUM, group=self.pg, async_op=False)
assert self.norm != 0
for k, v in self.err_epoch[state].items():
# print('\n\n!!KEY: ', k, '\n\n\n\n')
if config.dist: dist.all_reduce(self.err_epoch[state][k], op=dist.ReduceOp.SUM, group=self.pg, async_op=False)
self.err_epoch[state][k] = (self.err_epoch[state][k] / self.norm).item()
if self.rank <= 0:
self.summary.add_scalar('loss/epoch_{}_{}'.format(state, k), self.err_epoch[state][k], epoch)
self.summary.add_scalar('loss/itr_{}_{}'.format(state, k), self.err_epoch[state][k], self.model.itr_global['train'])
if self.rank <= 0:
torch.cuda.synchronize()
if state == 'train':
print_logs(state.upper() + ' TOTAL', self.config.mode, epoch, self.max_epoch, epoch_time, iter = self.model.itr_global[state], iter_total = self.config.total_itr, errs = self.err_epoch[state], lr = self.lr, is_overwrite = False)
else:
print_logs(state.upper() + ' TOTAL', self.config.mode, epoch, self.max_epoch, epoch_time, errs = self.err_epoch[state], lr = self.lr, is_overwrite = False)
print('\n')
if state == 'valid':
is_saved = False
while is_saved == False:
#print(self.rank)
try:
if math.isnan(self.err_epoch['valid']['psnr']) == False:
self.ckpt_manager.save(self.model.get_network(), self.model.get_training_state(epoch), epoch, score = [self.err_epoch['valid']['psnr']])
is_saved = True
except Exception as ex:
is_saved = False
#if math.isnan(self.err_epoch['valid']['psnr']) == False:
# self.ckpt_manager.save(self.model.get_network(), self.model.get_training_state(epoch), epoch, score = [self.err_epoch['valid']['psnr'].item()])
#is_saved = False
self.err_epoch[state] = {}
if config.dist:
dist.barrier()
if self.rank <= 0:
if epoch % self.config.refresh_image_log_every_epoch['train'] == 0:
remove_file_end_with(self.config.LOG_DIR.sample, '*.jpg')
remove_file_end_with(self.config.LOG_DIR.sample, '*.png')
if epoch % self.config.refresh_image_log_every_epoch['valid'] == 0:
remove_file_end_with(self.config.LOG_DIR.sample_val, '*.jpg')
remove_file_end_with(self.config.LOG_DIR.sample_val, '*.png')
gc.collect()
def iteration(self, epoch, state, is_log):
is_train = True if state == 'train' else False
data_loader = self.model.data_loader_train if is_train else self.model.data_loader_eval
if config.dist:
if is_train: self.model.sampler_train.set_epoch(epoch)
itr = 0
self.norm = torch.tensor(0).to(torch.device('cuda'))
for inputs in data_loader:
lr = None
itr_time = time.time()
self.model.iteration(inputs, epoch, self.max_epoch, is_log, is_train)
itr += 1
if is_log:
bs = inputs['gt'].size()[0]
errs = self.model.results['errs']
norm = self.model.results['norm']
for k, v in errs.items():
if itr == 1:
self.err_epoch[state][k] = v
else:
if k in self.err_epoch[state].keys():
self.err_epoch[state][k] += v
else:
self.err_epoch[state][k] = v
self.norm = self.norm + norm
if self.rank <= 0:
if config.save_sample:
# saves image patches for logging
vis = self.model.results['vis']
sample_dir = self.config.LOG_DIR.sample if is_train else self.config.LOG_DIR.sample_val
if itr == 1 or self.model.itr_global[state] % config.write_log_every_itr[state] == 0:
try:
i = 1
for key, val in vis.items():
if val.dim() == 5:
for j in range(val.size()[1]):
vutils.save_image(val[:, j, :, :, :], '{}/E{:02}_I{:06}_{:02}_{}_{:03}.jpg'.format(sample_dir, epoch, self.model.itr_global[state], i, key, j), nrow=3, padding = 0, normalize = False)
else:
vutils.save_image(val, '{}/E{:02}_I{:06}_{:02}_{}.jpg'.format(sample_dir, epoch, self.model.itr_global[state], i, key), nrow=3, padding = 0, normalize = False)
i += 1
except Exception as ex:
print('\n\n\n\nsaving error: ', ex, '\n\n\n\n')
self.lr = self.model.results['lr']
torch.cuda.synchronize()
print_logs(state.upper(), self.config.mode, epoch, self.max_epoch, itr_time, itr * self.model.itr_inc[state], self.model.get_itr_per_epoch(state), errs = errs, lr = self.lr, is_overwrite = itr > 1)
##########################################################
def init_dist(backend='nccl', **kwargs):
"""initialization for distributed training"""
if mp.get_start_method(allow_none=True) != 'spawn':
mp.set_start_method('spawn')
rank = int(os.environ['RANK'])
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(backend=backend, **kwargs)
if __name__ == '__main__':
project = 'PVDNet_TOG2021'
mode = 'PVDNet_DVD'
from configs.config import set_train_path
import importlib
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--is_train', action = 'store_true', default = False, help = 'whether to delete log')
parser.add_argument('--config', type = str, default = None, help = 'config name') # do not change the default value
parser.add_argument('--mode', type = str, default = mode, help = 'mode name')
parser.add_argument('--project', type = str, default = project, help = 'project name')
parser.add_argument('-data', '--data', type=str, default = 'DVD', help = 'dataset to train (DVD|nah) or test (DVD|nah|random)')
parser.add_argument('-LRS', '--learning_rate_scheduler', type=str, default = 'CA', help = 'learning rate scheduler to use [LD or CA]')
parser.add_argument('-b', '--batch_size', type = int, default = 8, help = 'number of batch')
args, _ = parser.parse_known_args()
if args.is_train:
config_lib = importlib.import_module('configs.{}'.format(args.config))
config = config_lib.get_config(args.project, args.mode, args.config, args.data, args.learning_rate_scheduler, args.batch_size)
config.is_train = True
## DEFAULT
parser.add_argument('-trainer', '--trainer', type = str, default = 'trainer', help = 'model name')
parser.add_argument('-net', '--network', type = str, default = config.network, help = 'network name')
parser.add_argument('-r', '--resume', type = str, default = config.resume, help = 'name of state or ckpt (names are the same)')
parser.add_argument('-dl', '--delete_log', action = 'store_true', default = False, help = 'whether to delete log')
parser.add_argument('-lr', '--lr_init', type = float, default = config.lr_init, help = 'leraning rate')
parser.add_argument('-th', '--thread_num', type = int, default = config.thread_num, help = 'number of thread')
parser.add_argument('-dist', '--dist', action = 'store_true', default = config.dist, help = 'whether to distributed pytorch')
parser.add_argument('-vs', '--is_verbose', action = 'store_true', default = False, help = 'whether to delete log')
parser.add_argument('-ss', '--save_sample', action = 'store_true', default = False, help = 'whether to save_sample')
parser.add_argument("--local_rank", type=int)
## CUSTOM
parser.add_argument('-wi', '--weights_init', type = float, default = config.wi, help = 'weights_init')
parser.add_argument('-proc', '--proc', type = str, default = 'proc', help = 'dummy process name for killing')
parser.add_argument('-gc', '--gc', type = float, default = config.gc, help = 'gradient clipping')
args, _ = parser.parse_known_args()
## default
config.trainer = args.trainer
config.network = args.network
config.resume = args.resume
config.delete_log = False if config.resume is not None else args.delete_log
config.lr_init = args.lr_init
config.batch_size = args.batch_size
config.thread_num = args.thread_num
config.dist = args.dist
config.data = args.data
config.LRS = args.learning_rate_scheduler
config.is_verbose = args.is_verbose
config.save_sample = args.save_sample
# CUSTOM
config.wi = args.weights_init
config.gc = args.gc
# set datapath
config = set_train_path(config, config.data)
if config.dist:
init_dist()
rank = dist.get_rank()
else:
rank = -1
if rank <= 0:
handle_directory(config, config.delete_log)
print(toGreen('Laoding Config...'))
# config_lib.print_config(config)
config_lib.log_config(config.LOG_DIR.config, config)
print(toRed('\tProject : {}'.format(config.project)))
print(toRed('\tMode : {}'.format(config.mode)))
print(toRed('\tConfig: {}'.format(config.config)))
print(toRed('\tNetwork: {}'.format(config.network)))
print(toRed('\tTrainer: {}'.format(config.trainer)))
if config.dist:
dist.barrier()
## random seed
seed = config.manual_seed
if seed is None:
seed = random.randint(1, 10000)
if rank <= 0 and config.is_verbose: print('Random seed: {}'.format(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
trainer = Trainer(config, rank)
if config.dist:
dist.barrier()
trainer.train()
else:
from eval import *
from configs.config import get_config, set_eval_path
from easydict import EasyDict as edict
print(toGreen('Laoding Config for evaluation'))
if args.config is None:
config = get_config(args.project, args.mode, None)
with open('{}/config.txt'.format(config.LOG_DIR.config)) as json_file:
json_data = json.load(json_file)
# config_lib = importlib.import_module('configs.{}'.format(json_data['config']))
config = edict(json_data)
# print(config['config'])
else:
config_lib = importlib.import_module('configs.{}'.format(args.config))
config = config_lib.get_config(args.project, args.mode, args.config)
config.is_train = False
## EVAL
parser.add_argument('-net', '--network', type = str, default = config.network, help = 'network name')
parser.add_argument('-ckpt_name', '--ckpt_name', type=str, default = None, help='ckpt name')
parser.add_argument('-ckpt_abs_name', '--ckpt_abs_name', type=str, default = None, help='ckpt abs name')
parser.add_argument('-ckpt_epoch', '--ckpt_epoch', type=int, default = None, help='ckpt epoch')
parser.add_argument('-ckpt_sc', '--ckpt_score', action = 'store_true', help='ckpt name')
parser.add_argument('-dist', '--dist', action = 'store_true', default = False, help = 'whether to distributed pytorch')
parser.add_argument('-eval_mode', '--eval_mode', type=str, default = 'quan', help = 'evaluation mode. qual(qualitative)/quan(quantitative)')
args, _ = parser.parse_known_args()
config.network = args.network
config.EVAL.ckpt_name = args.ckpt_name
config.EVAL.ckpt_abs_name = args.ckpt_abs_name
config.EVAL.ckpt_epoch = args.ckpt_epoch
config.EVAL.load_ckpt_by_score = args.ckpt_score
config.dist = args.dist
config.EVAL.eval_mode = args.eval_mode
config.EVAL.data = args.data
config = set_eval_path(config, config.EVAL.data)
print(toRed('\tProject : {}'.format(config.project)))
print(toRed('\tMode : {}'.format(config.mode)))
print(toRed('\tConfig: {}'.format(config.config)))
print(toRed('\tNetwork: {}'.format(config.network)))
print(toRed('\tTrainer: {}'.format(config.trainer)))
eval(config)