-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcuttingPlanes.py
executable file
·600 lines (533 loc) · 21.8 KB
/
cuttingPlanes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from builtins import range
from past.utils import old_div
__version__ = '0.5.2'
__author__ = 'Aykut Bulut and Ted Ralphs'
__license__ = 'Eclipse Public License'
__maintainer__ = 'Ted Ralphs'
__email__ = '[email protected]'
__url__ = 'https://github.com/tkralphs/CuPPy'
import sys
from math import floor
import numpy as np
from cylp.py.utils.sparseUtil import csc_matrixPlus
from cylp.cy import CyClpSimplex
from cylp.py.modeling import CyLPArray, CyLPModel
PYOMO_INSTALLED = True
try:
from pyomo.environ import AbstractModel, Var, Constraint, SolverFactory
from pyomo.environ import NonNegativeReals, NonPositiveReals, Reals, Set
from pyomo.environ import Integers, Objective, minimize, value
except ImportError:
PYOMO_INSTALLED = False
DISPLAY_ENABLED = True
try:
from src.grumpy.polyhedron2D import Polyhedron2D, Figure
from src.cuppy.milpInstance import MILPInstance
except ImportError:
try:
from coinor.grumpy.polyhedron2D import Polyhedron2D, Figure
from coinor.cuppy.milpInstance import MILPInstance
except ImportError:
DISPLAY_ENABLED = False
sys.path.append('examples')
EPS = 5
def isInt(x, eps = EPS):
'''
Return True if x is an integer, or if x is a numpy array
with all integer elements, False otherwise
'''
if isinstance(x, (int, float)):
return abs(floor(x + 10**(-eps)) - x) < 10**(-eps)
return (np.abs(np.around(x) - x) < 10**(-eps)).all()
def getFraction(x, eps = EPS):
'Return the fraction part of x: x - floor(x)'
# return x - floor(x)
return np.around(x, decimals = eps) - floor(np.around(x, decimals = eps))
def gomoryMixedIntegerCut(m, rowInds = None, eps = EPS, debug_print = False):
'''Return the Gomory mixed integer cut of rows in ``rowInds`` of lp
(a CyClpSimplex object)'''
cuts = []
lp = m.lp
sol = lp.primalVariableSolution['x']
if rowInds is None:
rowInds = list(range(lp.nConstraints))
for row in rowInds:
basicVarInd = lp.basicVariables[row]
if (basicVarInd in m.integerIndices) and (not isInt(sol[basicVarInd], eps)):
f0 = getFraction(sol[basicVarInd], eps)
f = []
for i in range(lp.nVariables):
if i in lp.basicVariables:
#This is to try to avoid getting very small numbers that
#should be zero
f.append(0)
else:
f.append(getFraction(lp.tableau[row, i], eps))
pi = np.array([old_div(f[j],f0) if f[j] <= f0
else old_div((1-f[j]),(1-f0)) for j in range(lp.nVariables)])
pi_slacks = np.array([old_div(x,f0) if x > 0 else old_div(-x,(1-f0))
for x in lp.tableau[row, lp.nVariables:]])
pi -= pi_slacks * lp.coefMatrix
pi0 = (1 - np.dot(pi_slacks, lp.constraintsUpper) if m.sense == '<='
else 1 + np.dot(pi_slacks, lp.constraintsUpper))
if m.sense == '>=':
cuts.append((pi, pi0))
else:
cuts.append((-pi, -pi0))
return cuts, []
def liftAndProject(m, rowInds = None, eps = EPS, debug_print = False):
'''Return the lift-and-project associated with variables that are basic in
rows in ``rowInds`` of lp (a CyClpSimplex object)'''
cuts = []
lp = m.lp
sol = lp.primalVariableSolution['x']
if rowInds is None:
rowInds = list(range(lp.nConstraints))
for row in rowInds:
basicVarInd = lp.basicVariables[row]
if (basicVarInd in m.integerIndices) and (not isInt(sol[basicVarInd], eps)):
e = np.zeros(lp.nCols)
e[basicVarInd] = 1
#Call function for solving CGLP for the associated variable
#disjunction (disjunction is "<=")
cuts += disjunctionToCut(m, e, floor(sol[basicVarInd]), eps = eps,
debug_print = debug_print)
return cuts, []
def disjunctionToCut(m, pi, pi0, debug_print = False, use_cylp = True, eps = EPS):
'''Generate the most violated valid inequality from a given disjunction'''
me = "cglp_cuts: "
lp = m.lp
sol = lp.primalVariableSolution['x']
if debug_print:
print(me, "constraints sense = ", m.sense)
print(me, "matrix = ")
print(m.A)
print(me, "rhs = ", m.b)
print(me, "vars lower bounds = ", lp.variablesLower)
print(me, "vars upper bounds = ", lp.variablesUpper)
print(me, "objective = ", lp.objective)
print(me, "current solution = ", sol)
print(me, "pi = ", pi)
print(me, "pi0 = ", pi0)
############################################################################
## There are two given LPs:
## s.t. Ax >= b s.t. Ax >= b
## -pi.x >= -pi_0 pi.x >= pi_0+1
## A, b, c, pi, pi_0 are given
##
## CGLP: alpha.x >= beta should be valid for both LPs above
##
## min alpha.x* - beta
## uA - u0.pi = alpha
## vA + v0.pi = alpha
## ub - u0.pi_0 >= beta
## vb + v0.(pi_0 + 1) >= beta
## u0 + v0 = 1
## u, v, u0, v0 >= 0
## if min value comes out < 0, then (alpha.x >= beta) is a cut.
############################################################################
pi = CyLPArray(pi)
Atran = m.A.transpose()
b = CyLPArray(m.b)
numRows, numCols = m.A.shape
if use_cylp:
sp = CyLPModel()
u = sp.addVariable('u', numRows, isInt = False)
v = sp.addVariable('v', numRows, isInt = False)
u0 = sp.addVariable('u0', 1, isInt = False)
v0 = sp.addVariable('v0', 1, isInt = False)
alpha = sp.addVariable('alpha', lp.nVariables, isInt = False)
beta = sp.addVariable('beta', 1, isInt = False)
#This should be as simple as this, but it doesn't work.
#Maybe a bug in CyLP?
#sp += alpha - Atran*u - pi*u0 == 0
#sp += alpha - Atran*v + pi*v0 == 0
for i in range(numCols):
sp += alpha[i] - sum(Atran[i,j]*u[j] for j in range(numRows)) - pi[i]*u0 == 0
for i in range(numCols):
sp += alpha[i] - sum(Atran[i,j]*v[j] for j in range(numRows)) + pi[i]*v0 == 0
if m.sense == '<=':
sp += beta - b*u - pi0*u0 >= 0
sp += beta - b*v + (pi0 + 1)*v0 >= 0
else:
sp += beta - b*u - pi0*u0 <= 0
sp += beta - b*v + (pi0 + 1)*v0 <= 0
sp += u0 + v0 == 1
sp += u >= 0
sp += v >= 0
sp += u0 >= 0
sp += v0 >= 0
if m.sense == '<=':
sp.objective = sum(-sol[i]*alpha[i] for i in range(numCols)) + beta
else:
#This direction is not debugged
sp.objective = sum(sol[i]*alpha[i] for i in range(numCols)) - beta
cglp = CyClpSimplex(sp)
# If we want to solve it as an MILP
# cglp = CyClpSimplex(sp).getCbcModel()
#cglp.writeLp('lp.lp')
cglp.logLevel = 0
cglp.primal(startFinishOptions = 'x')
# Solve as MILP
# cglp.solve()
beta = cglp.primalVariableSolution['beta'][0]
alpha = cglp.primalVariableSolution['alpha']
u = cglp.primalVariableSolution['u']
v = cglp.primalVariableSolution['v']
u0 = cglp.primalVariableSolution['u0'][0]
v0 = cglp.primalVariableSolution['v0'][0]
if debug_print:
print(me, 'Objective Value: ', cglp.objectiveValue)
if debug_print:
print(me, 'u: ', u)
print(me, 'v: ', v)
print(me, 'u0: ', u0)
print(me, 'v0: ', v0)
else:
CG = AbstractModel()
CG.u = Var(list(range(numRows)), domain=NonNegativeReals,
bounds = (0.0, None))
CG.v = Var(list(range(numRows)), domain=NonNegativeReals,
bounds = (0.0, None))
CG.u0 = Var(domain=NonNegativeReals, bounds = (0.0, None))
CG.v0 = Var(domain=NonNegativeReals, bounds = (0.0, None))
CG.alpha = Var(list(range(numRows)), domain=Reals,
bounds = (None, None))
CG.beta = Var(domain=Reals, bounds = (None, None))
## Constraints
def pi_rule_left(CG, i):
x = float(pi[i])
return(sum(Atran[i, j]*CG.u[j] for j in range(numRows)) -
x*CG.u0 - CG.alpha[i] == 0.0)
CG.pi_rule_left = Constraint(list(range(numCols)), rule=pi_rule_left)
def pi_rule_right(CG, i):
x = float(pi[i])
return(sum(Atran[i, j]*CG.v[j] for j in range(numRows)) +
x*CG.v0 - CG.alpha[i] == 0.0)
CG.pi_rule_right = Constraint(list(range(numCols)), rule=pi_rule_right)
if m.sense == '<=':
def pi0_rule_left(CG):
return(sum(b[j]*CG.u[j] for j in range(numRows)) -
pi0*CG.u0 - CG.beta <= 0.0)
CG.pi0_rule_left = Constraint(rule=pi0_rule_left)
def pi0_rule_right(CG):
return(sum(b[j]*CG.v[j] for j in range(numRows)) +
(pi0 + 1)*CG.v0 - CG.beta <= 0.0)
CG.pi0_rule_right = Constraint(rule=pi0_rule_right)
else:
def pi0_rule_left(CG):
return(sum(b[j]*CG.u[j] for j in range(numRows)) -
pi0*CG.u0 - CG.beta >= 0.0)
CG.pi0_rule_left = Constraint(rule=pi0_rule_left)
def pi0_rule_right(CG):
return(sum(b[j]*CG.v[j] for j in range(numRows)) +
(pi0 + 1)*CG.v0 - CG.beta >= 0.0)
CG.pi0_rule_right = Constraint(rule=pi0_rule_right)
def normalization_rule(CG):
return(CG.u0 + CG.v0 == 1.0)
CG.normalization_rule = Constraint(rule=normalization_rule)
def objective_rule(CG):
return(sum(sol[i]*CG.alpha[i] for i in range(numCols)) -
CG.beta)
if m.sense == '<=':
CG.objective = Objective(sense=maximize, rule=objective_rule)
else:
CG.objective = Objective(sense=minimize, rule=objective_rule)
opt = SolverFactory("cbc")
instance = CG.create_instance()
#instance.pprint()
#instance.write("foo.nl", format = "nl")
#opt.options['bonmin.bb_log_level'] = 5
#opt.options['bonmin.bb_log_interval'] = 1
results = opt.solve(instance, tee=False)
#results = opt.solve(instance)
instance.solutions.load_from(results)
beta = instance.beta.value
alpha = np.array([instance.alpha[i].value
for i in range(lp.nVariables)])
violation = beta - np.dot(alpha, sol)
if debug_print:
print(me, 'Beta: ', beta)
print(me, 'alpha: ', alpha)
print(me, 'Violation of cut: ', violation)
if np.abs(violation) > 10**(-eps):
return [(alpha, beta)]
print('No violated cuts found solving CGLP', violation)
return []
def disp_relaxation(f, A, b, cuts = [], sol = None, disj = [], filename = None):
#TODO: Check sense of inequalities by looking explicitly at
# lp.constraintsUpper and lp.constraintsLower
p = Polyhedron2D(A = A, b = b)
f.add_polyhedron(p, label = 'Polyhedron $P$')
f.set_xlim(p.xlim)
f.set_ylim(p.ylim)
pI = p.make_integer_hull()
f.add_polyhedron(pI, show_int_points = True, color = 'red',
linestyle = 'dashed',
label = 'Convex hull of integer points')
for (coeff, r) in cuts:
f.add_line(coeff, r, p.xlim, p.ylim, color = 'green', linestyle = 'dashed')
for (coeff, r) in disj:
f.add_line(coeff, r, p.xlim, p.ylim, color = 'red', linestyle = 'dashed')
f.add_line(coeff, r+1, p.xlim, p.ylim, color = 'red', linestyle = 'dashed')
if sol is not None:
f.add_point(sol, radius = .05)
f.show(filename = filename)
def solve(m, whichCuts = [], use_cglp = False, debug_print = False, eps = EPS,
max_iter = 100, max_cuts = 10, display = False, filename = None):
if not isinstance(m, MILPInstance):
print("Invalid first parameter: Must be of type MILPInstance")
exit
if not DISPLAY_ENABLED:
display = False
else:
f = Figure()
if m.lp.nCols > 2 or m.A is None:
display = False
m.lp.logLevel = 0
#Include bounds explicitly in the constraint matrix for display and for
#use in cut generators.
infinity = m.lp.getCoinInfinity()
if m.sense == '<=':
b = m.lp.constraintsUpper.copy()
mult = -1.0
else:
b = m.lp.constraintsLower.copy()
mult = 1.0
if type(m.A) == csc_matrixPlus:
A = m.A.toarray()
else:
A = m.A.copy()
for i in range(m.lp.nCols):
e = np.zeros((1, m.lp.nCols))
if m.lp.variablesUpper[i] < infinity:
b.resize(b.size+1, refcheck = False)
e[0, i] = -mult
b[-1] = -mult*m.lp.variablesUpper[i]
A = np.vstack((A, e))
if m.lp.variablesLower[i] > -infinity:
b.resize(b.size+1, refcheck = False)
e[0, i] = mult
b[-1] = mult*m.lp.variablesLower[i]
A = np.vstack((A, e))
m.A = A
m.b = b
if display and filename is not None:
disp_relaxation(f, m.A, m.b, filename = filename+'.png')
elif display:
disp_relaxation(f, m.A, m.b)
disj = []
prev_sol = np.zeros((1, m.lp.nCols))
for i in range(max_iter):
print('Iteration ', i)
m.lp.primal(startFinishOptions = 'x')
print('Current bound:', m.lp.objectiveValue)
#Binv = np.zeros(shape = (lp.nConstraints, lp.nConstraints))
#for i in range(lp.nVariables, lp.nVariables+lp.nConstraints):
# lp.getBInvACol(i, Binv[i-lp.nVariables,:])
#rhs = lp.rhs
if m.sense == '<=':
rhs = np.dot(m.lp.basisInverse, m.lp.constraintsUpper)
else:
rhs = np.dot(m.lp.basisInverse, m.lp.constraintsLower)
sol = m.lp.primalVariableSolution['x']
if debug_print:
print('Current basis inverse:')
print(m.lp.basisInverse)
print('Condition number of basis inverse',
np.around(np.linalg.cond(m.lp.basisInverse)))
print('Current tableaux:')
print(m.lp.tableau)
print('Current right hand side:\n', rhs)
#print('Dual solution:', m.lp.dualConstraintSolution)
#print lp.rhs
print('Current solution: ', sol)
if (sol - prev_sol).any():
prev_sol = sol
else:
print ("Solution repeated, stalling detected")
print ("Exiting")
break
if isInt(sol[m.integerIndices], eps):
print('Integer solution found!')
break
if np.around(np.linalg.cond(m.lp.basisInverse)) >= 10**32:
print ("Condition number of the basis matrix exceeds 10^32")
print ("Exiting")
break
cuts = []
if disj == []:
for (cg, args) in whichCuts:
tmp_cuts, tmp_disj = cg(m, **args, eps = eps)
cuts += tmp_cuts
disj += tmp_disj
cur_num_cuts = len(cuts)
if use_cglp:
if len(disj) > 0:
for d in disj:
cuts += disjunctionToCut(m, d[0], d[1], eps = eps)
if cuts == []:
if disj == []:
print('No cuts found and terminating!')
break
else:
print('No cuts found but continuing!')
if display and filename is not None:
disp_relaxation(f, m.A, m.b, cuts, sol, disj,
filename = filename+str(i)+'.png')
elif display:
disp_relaxation(f, m.A, m.b, cuts, sol, disj)
if len(cuts) == cur_num_cuts:
disj = []
for (coeff, r) in cuts[:max_cuts]:
#TODO sort cuts by degree of violation
if m.sense == '<=':
coeff = np.floor(coeff*(10**eps))/(10**eps)
r = np.ceil(r*(10**eps))/(10**eps)
print('Adding cut: ', coeff, '<=', r)
m.lp += CyLPArray(coeff) * m.x <= r
else:
coeff = np.ceil(coeff*(10**eps))/(10**eps)
r = np.floor(r*(10**eps))/(10**eps)
print('Adding cut: ', coeff, '>=', r)
m.lp += CyLPArray(coeff) * m.x >= r
m.A = np.vstack((m.A, np.array(coeff)))
m.b.resize(m.b.size+1, refcheck = False)
m.b[-1] = r
if display:
disp_relaxation(f, m.A, m.b)
def bnSolve(m, whichCuts = [], use_cglp = False, debug_print = False, eps = EPS,
max_iter = 100, max_cuts = 10, display = False, filename = None):
if not isinstance(m, MILPInstance):
print("Invalid first parameter: Must be of type MILPInstance")
exit
# list to store all generated cuts
yielded_cuts = []
if not DISPLAY_ENABLED:
display = False
else:
f = Figure()
if m.lp.nCols > 2 or m.A is None:
display = False
m.lp.logLevel = 0
#Include bounds explicitly in the constraint matrix for display and for
#use in cut generators.
infinity = m.lp.getCoinInfinity()
if m.sense == '<=':
b = m.lp.constraintsUpper.copy()
mult = -1.0
else:
b = m.lp.constraintsLower.copy()
mult = 1.0
if type(m.A) == csc_matrixPlus:
A = m.A.toarray()
else:
A = m.A.copy()
for i in range(m.lp.nCols):
e = np.zeros((1, m.lp.nCols))
if m.lp.variablesUpper[i] < infinity:
b.resize(b.size+1, refcheck = False)
e[0, i] = -mult
b[-1] = -mult*m.lp.variablesUpper[i]
A = np.vstack((A, e))
if m.lp.variablesLower[i] > -infinity:
b.resize(b.size+1, refcheck = False)
e[0, i] = mult
b[-1] = mult*m.lp.variablesLower[i]
A = np.vstack((A, e))
m.A = A
m.b = b
if display and filename is not None:
disp_relaxation(f, m.A, m.b, filename = filename+'.png')
elif display:
disp_relaxation(f, m.A, m.b)
disj = []
prev_sol = np.zeros((1, m.lp.nCols))
for i in range(max_iter):
print('Iteration ', i)
m.lp.primal(startFinishOptions = 'x')
print('Current bound:', m.lp.objectiveValue)
#Binv = np.zeros(shape = (lp.nConstraints, lp.nConstraints))
#for i in range(lp.nVariables, lp.nVariables+lp.nConstraints):
# lp.getBInvACol(i, Binv[i-lp.nVariables,:])
#rhs = lp.rhs
if m.sense == '<=':
rhs = np.dot(m.lp.basisInverse, m.lp.constraintsUpper)
else:
rhs = np.dot(m.lp.basisInverse, m.lp.constraintsLower)
sol = m.lp.primalVariableSolution['x']
if debug_print:
print('Current basis inverse:')
print(m.lp.basisInverse)
print('Condition number of basis inverse',
np.around(np.linalg.cond(m.lp.basisInverse)))
print('Current tableaux:')
print(m.lp.tableau)
print('Current right hand side:\n', rhs)
#print('Dual solution:', m.lp.dualConstraintSolution)
#print lp.rhs
print('Current solution: ', sol)
if (sol - prev_sol).any():
prev_sol = sol
else:
print ("Solution repeated, stalling detected")
print ("Exiting")
break
if isInt(sol[m.integerIndices], eps):
print('Integer solution found!')
break
if np.around(np.linalg.cond(m.lp.basisInverse)) >= 10**32:
print ("Condition number of the basis matrix exceeds 10^32")
print ("Exiting")
break
cuts = []
if disj == []:
for (cg, args) in whichCuts:
tmp_cuts, tmp_disj = cg(m, **args, eps = eps)
cuts += tmp_cuts
disj += tmp_disj
cur_num_cuts = len(cuts)
if use_cglp:
if len(disj) > 0:
for d in disj:
cuts += disjunctionToCut(m, d[0], d[1], eps = eps)
if cuts == []:
if disj == []:
print('No cuts found and terminating!')
break
else:
print('No cuts found but continuing!')
if display and filename is not None:
disp_relaxation(f, m.A, m.b, cuts, sol, disj,
filename = filename+str(i)+'.png')
elif display:
disp_relaxation(f, m.A, m.b, cuts, sol, disj)
if len(cuts) == cur_num_cuts:
disj = []
for (coeff, r) in cuts[:max_cuts]:
#TODO sort cuts by degree of violation
if m.sense == '<=':
coeff = np.floor(coeff*(10**eps))/(10**eps)
r = np.ceil(r*(10**eps))/(10**eps)
print('Adding cut: ', coeff, '<=', r)
m.lp += CyLPArray(coeff) * m.x <= r
yielded_cuts.append(CyLPArray(coeff) * m.x <= r)
else:
coeff = np.ceil(coeff*(10**eps))/(10**eps)
r = np.floor(r*(10**eps))/(10**eps)
print('Adding cut: ', coeff, '>=', r)
m.lp += CyLPArray(coeff) * m.x >= r
yielded_cuts.append(CyLPArray(coeff) * m.x <= r)
m.A = np.vstack((m.A, np.array(coeff)))
m.b.resize(m.b.size+1, refcheck = False)
m.b[-1] = r
if display:
disp_relaxation(f, m.A, m.b)
return sol, yielded_cuts
if __name__ == '__main__':
solve(MILPInstance(module_name = 'coinor.cuppy.examples.MIP6'),
whichCuts = [(gomoryMixedIntegerCut, {})],
display = True, debug_print = True, use_cglp = False)