-
Notifications
You must be signed in to change notification settings - Fork 108
/
app.py
1119 lines (1012 loc) · 43.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ['GRADIO_ANALYTICS_ENABLED'] = '0'
sys.path.insert(0, os.getcwd())
sys.path.append(os.path.join(os.path.dirname(__file__), 'sd-scripts'))
import subprocess
import gradio as gr
from PIL import Image
import torch
import uuid
import shutil
import json
import yaml
from slugify import slugify
from transformers import AutoProcessor, AutoModelForCausalLM
from gradio_logsview import LogsView, LogsViewRunner
from huggingface_hub import hf_hub_download, HfApi
from library import flux_train_utils, huggingface_util
from argparse import Namespace
import train_network
import toml
import re
MAX_IMAGES = 150
with open('models.yaml', 'r') as file:
models = yaml.safe_load(file)
def readme(base_model, lora_name, instance_prompt, sample_prompts):
# model license
model_config = models[base_model]
model_file = model_config["file"]
base_model_name = model_config["base"]
license = None
license_name = None
license_link = None
license_items = []
if "license" in model_config:
license = model_config["license"]
license_items.append(f"license: {license}")
if "license_name" in model_config:
license_name = model_config["license_name"]
license_items.append(f"license_name: {license_name}")
if "license_link" in model_config:
license_link = model_config["license_link"]
license_items.append(f"license_link: {license_link}")
license_str = "\n".join(license_items)
print(f"license_items={license_items}")
print(f"license_str = {license_str}")
# tags
tags = [ "text-to-image", "flux", "lora", "diffusers", "template:sd-lora", "fluxgym" ]
# widgets
widgets = []
sample_image_paths = []
output_name = slugify(lora_name)
samples_dir = resolve_path_without_quotes(f"outputs/{output_name}/sample")
try:
for filename in os.listdir(samples_dir):
# Filename Schema: [name]_[steps]_[index]_[timestamp].png
match = re.search(r"_(\d+)_(\d+)_(\d+)\.png$", filename)
if match:
steps, index, timestamp = int(match.group(1)), int(match.group(2)), int(match.group(3))
sample_image_paths.append((steps, index, f"sample/{filename}"))
# Sort by numeric index
sample_image_paths.sort(key=lambda x: x[0], reverse=True)
final_sample_image_paths = sample_image_paths[:len(sample_prompts)]
final_sample_image_paths.sort(key=lambda x: x[1])
for i, prompt in enumerate(sample_prompts):
_, _, image_path = final_sample_image_paths[i]
widgets.append(
{
"text": prompt,
"output": {
"url": image_path
},
}
)
except:
print(f"no samples")
dtype = "torch.bfloat16"
# Construct the README content
readme_content = f"""---
tags:
{yaml.dump(tags, indent=4).strip()}
{"widget:" if os.path.isdir(samples_dir) else ""}
{yaml.dump(widgets, indent=4).strip() if widgets else ""}
base_model: {base_model_name}
{"instance_prompt: " + instance_prompt if instance_prompt else ""}
{license_str}
---
# {lora_name}
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
{"You should use `" + instance_prompt + "` to trigger the image generation." if instance_prompt else "No trigger words defined."}
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
"""
return readme_content
def account_hf():
try:
with open("HF_TOKEN", "r") as file:
token = file.read()
api = HfApi(token=token)
try:
account = api.whoami()
return { "token": token, "account": account['name'] }
except:
return None
except:
return None
"""
hf_logout.click(fn=logout_hf, outputs=[hf_token, hf_login, hf_logout, repo_owner])
"""
def logout_hf():
os.remove("HF_TOKEN")
global current_account
current_account = account_hf()
print(f"current_account={current_account}")
return gr.update(value=""), gr.update(visible=True), gr.update(visible=False), gr.update(value="", visible=False)
"""
hf_login.click(fn=login_hf, inputs=[hf_token], outputs=[hf_token, hf_login, hf_logout, repo_owner])
"""
def login_hf(hf_token):
api = HfApi(token=hf_token)
try:
account = api.whoami()
if account != None:
if "name" in account:
with open("HF_TOKEN", "w") as file:
file.write(hf_token)
global current_account
current_account = account_hf()
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(value=current_account["account"], visible=True)
return gr.update(), gr.update(), gr.update(), gr.update()
except:
print(f"incorrect hf_token")
return gr.update(), gr.update(), gr.update(), gr.update()
def upload_hf(base_model, lora_rows, repo_owner, repo_name, repo_visibility, hf_token):
src = lora_rows
repo_id = f"{repo_owner}/{repo_name}"
gr.Info(f"Uploading to Huggingface. Please Stand by...", duration=None)
args = Namespace(
huggingface_repo_id=repo_id,
huggingface_repo_type="model",
huggingface_repo_visibility=repo_visibility,
huggingface_path_in_repo="",
huggingface_token=hf_token,
async_upload=False
)
print(f"upload_hf args={args}")
huggingface_util.upload(args=args, src=src)
gr.Info(f"[Upload Complete] https://huggingface.co/{repo_id}", duration=None)
def load_captioning(uploaded_files, concept_sentence):
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
updates = []
if len(uploaded_images) <= 1:
raise gr.Error(
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
)
elif len(uploaded_images) > MAX_IMAGES:
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
# Update for the captioning_area
# for _ in range(3):
updates.append(gr.update(visible=True))
# Update visibility and image for each captioning row and image
for i in range(1, MAX_IMAGES + 1):
# Determine if the current row and image should be visible
visible = i <= len(uploaded_images)
# Update visibility of the captioning row
updates.append(gr.update(visible=visible))
# Update for image component - display image if available, otherwise hide
image_value = uploaded_images[i - 1] if visible else None
updates.append(gr.update(value=image_value, visible=visible))
corresponding_caption = False
if(image_value):
base_name = os.path.splitext(os.path.basename(image_value))[0]
if base_name in txt_files_dict:
with open(txt_files_dict[base_name], 'r') as file:
corresponding_caption = file.read()
# Update value of captioning area
text_value = corresponding_caption if visible and corresponding_caption else concept_sentence if visible and concept_sentence else None
updates.append(gr.update(value=text_value, visible=visible))
# Update for the sample caption area
updates.append(gr.update(visible=True))
updates.append(gr.update(visible=True))
return updates
def hide_captioning():
return gr.update(visible=False), gr.update(visible=False)
def resize_image(image_path, output_path, size):
with Image.open(image_path) as img:
width, height = img.size
if width < height:
new_width = size
new_height = int((size/width) * height)
else:
new_height = size
new_width = int((size/height) * width)
print(f"resize {image_path} : {new_width}x{new_height}")
img_resized = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
img_resized.save(output_path)
def create_dataset(destination_folder, size, *inputs):
print("Creating dataset")
images = inputs[0]
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
for index, image in enumerate(images):
# copy the images to the datasets folder
new_image_path = shutil.copy(image, destination_folder)
# if it's a caption text file skip the next bit
ext = os.path.splitext(new_image_path)[-1].lower()
if ext == '.txt':
continue
# resize the images
resize_image(new_image_path, new_image_path, size)
# copy the captions
original_caption = inputs[index + 1]
image_file_name = os.path.basename(new_image_path)
caption_file_name = os.path.splitext(image_file_name)[0] + ".txt"
caption_path = resolve_path_without_quotes(os.path.join(destination_folder, caption_file_name))
print(f"image_path={new_image_path}, caption_path = {caption_path}, original_caption={original_caption}")
# if caption_path exists, do not write
if os.path.exists(caption_path):
print(f"{caption_path} already exists. use the existing .txt file")
else:
print(f"{caption_path} create a .txt caption file")
with open(caption_path, 'w') as file:
file.write(original_caption)
print(f"destination_folder {destination_folder}")
return destination_folder
def run_captioning(images, concept_sentence, *captions):
print(f"run_captioning")
print(f"concept sentence {concept_sentence}")
print(f"captions {captions}")
#Load internally to not consume resources for training
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"device={device}")
torch_dtype = torch.float16
model = AutoModelForCausalLM.from_pretrained(
"multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True
).to(device)
processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True)
captions = list(captions)
for i, image_path in enumerate(images):
print(captions[i])
if isinstance(image_path, str): # If image is a file path
image = Image.open(image_path).convert("RGB")
prompt = "<DETAILED_CAPTION>"
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
print(f"inputs {inputs}")
generated_ids = model.generate(
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
)
print(f"generated_ids {generated_ids}")
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
print(f"generated_text: {generated_text}")
parsed_answer = processor.post_process_generation(
generated_text, task=prompt, image_size=(image.width, image.height)
)
print(f"parsed_answer = {parsed_answer}")
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
print(f"caption_text = {caption_text}, concept_sentence={concept_sentence}")
if concept_sentence:
caption_text = f"{concept_sentence} {caption_text}"
captions[i] = caption_text
yield captions
model.to("cpu")
del model
del processor
if torch.cuda.is_available():
torch.cuda.empty_cache()
def recursive_update(d, u):
for k, v in u.items():
if isinstance(v, dict) and v:
d[k] = recursive_update(d.get(k, {}), v)
else:
d[k] = v
return d
def download(base_model):
model = models[base_model]
model_file = model["file"]
repo = model["repo"]
# download unet
if base_model == "flux-dev" or base_model == "flux-schnell":
unet_folder = "models/unet"
else:
unet_folder = f"models/unet/{repo}"
unet_path = os.path.join(unet_folder, model_file)
if not os.path.exists(unet_path):
os.makedirs(unet_folder, exist_ok=True)
gr.Info(f"Downloading base model: {base_model}. Please wait. (You can check the terminal for the download progress)", duration=None)
print(f"download {base_model}")
hf_hub_download(repo_id=repo, local_dir=unet_folder, filename=model_file)
# download vae
vae_folder = "models/vae"
vae_path = os.path.join(vae_folder, "ae.sft")
if not os.path.exists(vae_path):
os.makedirs(vae_folder, exist_ok=True)
gr.Info(f"Downloading vae")
print(f"downloading ae.sft...")
hf_hub_download(repo_id="cocktailpeanut/xulf-dev", local_dir=vae_folder, filename="ae.sft")
# download clip
clip_folder = "models/clip"
clip_l_path = os.path.join(clip_folder, "clip_l.safetensors")
if not os.path.exists(clip_l_path):
os.makedirs(clip_folder, exist_ok=True)
gr.Info(f"Downloading clip...")
print(f"download clip_l.safetensors")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", local_dir=clip_folder, filename="clip_l.safetensors")
# download t5xxl
t5xxl_path = os.path.join(clip_folder, "t5xxl_fp16.safetensors")
if not os.path.exists(t5xxl_path):
print(f"download t5xxl_fp16.safetensors")
gr.Info(f"Downloading t5xxl...")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", local_dir=clip_folder, filename="t5xxl_fp16.safetensors")
def resolve_path(p):
current_dir = os.path.dirname(os.path.abspath(__file__))
norm_path = os.path.normpath(os.path.join(current_dir, p))
return f"\"{norm_path}\""
def resolve_path_without_quotes(p):
current_dir = os.path.dirname(os.path.abspath(__file__))
norm_path = os.path.normpath(os.path.join(current_dir, p))
return norm_path
def gen_sh(
base_model,
output_name,
resolution,
seed,
workers,
learning_rate,
network_dim,
max_train_epochs,
save_every_n_epochs,
timestep_sampling,
guidance_scale,
vram,
sample_prompts,
sample_every_n_steps,
*advanced_components
):
print(f"gen_sh: network_dim:{network_dim}, max_train_epochs={max_train_epochs}, save_every_n_epochs={save_every_n_epochs}, timestep_sampling={timestep_sampling}, guidance_scale={guidance_scale}, vram={vram}, sample_prompts={sample_prompts}, sample_every_n_steps={sample_every_n_steps}")
output_dir = resolve_path(f"outputs/{output_name}")
sample_prompts_path = resolve_path(f"outputs/{output_name}/sample_prompts.txt")
line_break = "\\"
file_type = "sh"
if sys.platform == "win32":
line_break = "^"
file_type = "bat"
############# Sample args ########################
sample = ""
if len(sample_prompts) > 0 and sample_every_n_steps > 0:
sample = f"""--sample_prompts={sample_prompts_path} --sample_every_n_steps="{sample_every_n_steps}" {line_break}"""
############# Optimizer args ########################
# if vram == "8G":
# optimizer = f"""--optimizer_type adafactor {line_break}
# --optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False" {line_break}
# --split_mode {line_break}
# --network_args "train_blocks=single" {line_break}
# --lr_scheduler constant_with_warmup {line_break}
# --max_grad_norm 0.0 {line_break}"""
if vram == "16G":
# 16G VRAM
optimizer = f"""--optimizer_type adafactor {line_break}
--optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False" {line_break}
--lr_scheduler constant_with_warmup {line_break}
--max_grad_norm 0.0 {line_break}"""
elif vram == "12G":
# 12G VRAM
optimizer = f"""--optimizer_type adafactor {line_break}
--optimizer_args "relative_step=False" "scale_parameter=False" "warmup_init=False" {line_break}
--split_mode {line_break}
--network_args "train_blocks=single" {line_break}
--lr_scheduler constant_with_warmup {line_break}
--max_grad_norm 0.0 {line_break}"""
else:
# 20G+ VRAM
optimizer = f"--optimizer_type adamw8bit {line_break}"
#######################################################
model_config = models[base_model]
model_file = model_config["file"]
repo = model_config["repo"]
if base_model == "flux-dev" or base_model == "flux-schnell":
model_folder = "models/unet"
else:
model_folder = f"models/unet/{repo}"
model_path = os.path.join(model_folder, model_file)
pretrained_model_path = resolve_path(model_path)
clip_path = resolve_path("models/clip/clip_l.safetensors")
t5_path = resolve_path("models/clip/t5xxl_fp16.safetensors")
ae_path = resolve_path("models/vae/ae.sft")
sh = f"""accelerate launch {line_break}
--mixed_precision bf16 {line_break}
--num_cpu_threads_per_process 1 {line_break}
sd-scripts/flux_train_network.py {line_break}
--pretrained_model_name_or_path {pretrained_model_path} {line_break}
--clip_l {clip_path} {line_break}
--t5xxl {t5_path} {line_break}
--ae {ae_path} {line_break}
--cache_latents_to_disk {line_break}
--save_model_as safetensors {line_break}
--sdpa --persistent_data_loader_workers {line_break}
--max_data_loader_n_workers {workers} {line_break}
--seed {seed} {line_break}
--gradient_checkpointing {line_break}
--mixed_precision bf16 {line_break}
--save_precision bf16 {line_break}
--network_module networks.lora_flux {line_break}
--network_dim {network_dim} {line_break}
{optimizer}{sample}
--learning_rate {learning_rate} {line_break}
--cache_text_encoder_outputs {line_break}
--cache_text_encoder_outputs_to_disk {line_break}
--fp8_base {line_break}
--highvram {line_break}
--max_train_epochs {max_train_epochs} {line_break}
--save_every_n_epochs {save_every_n_epochs} {line_break}
--dataset_config {resolve_path(f"outputs/{output_name}/dataset.toml")} {line_break}
--output_dir {output_dir} {line_break}
--output_name {output_name} {line_break}
--timestep_sampling {timestep_sampling} {line_break}
--discrete_flow_shift 3.1582 {line_break}
--model_prediction_type raw {line_break}
--guidance_scale {guidance_scale} {line_break}
--loss_type l2 {line_break}"""
############# Advanced args ########################
global advanced_component_ids
global original_advanced_component_values
# check dirty
print(f"original_advanced_component_values = {original_advanced_component_values}")
advanced_flags = []
for i, current_value in enumerate(advanced_components):
# print(f"compare {advanced_component_ids[i]}: old={original_advanced_component_values[i]}, new={current_value}")
if original_advanced_component_values[i] != current_value:
# dirty
if current_value == True:
# Boolean
advanced_flags.append(advanced_component_ids[i])
else:
# string
advanced_flags.append(f"{advanced_component_ids[i]} {current_value}")
if len(advanced_flags) > 0:
advanced_flags_str = f" {line_break}\n ".join(advanced_flags)
sh = sh + "\n " + advanced_flags_str
return sh
def gen_toml(
dataset_folder,
resolution,
class_tokens,
num_repeats
):
toml = f"""[general]
shuffle_caption = false
caption_extension = '.txt'
keep_tokens = 1
[[datasets]]
resolution = {resolution}
batch_size = 1
keep_tokens = 1
[[datasets.subsets]]
image_dir = '{resolve_path_without_quotes(dataset_folder)}'
class_tokens = '{class_tokens}'
num_repeats = {num_repeats}"""
return toml
def update_total_steps(max_train_epochs, num_repeats, images):
try:
num_images = len(images)
total_steps = max_train_epochs * num_images * num_repeats
print(f"max_train_epochs={max_train_epochs} num_images={num_images}, num_repeats={num_repeats}, total_steps={total_steps}")
return gr.update(value = total_steps)
except:
print("")
def set_repo(lora_rows):
selected_name = os.path.basename(lora_rows)
return gr.update(value=selected_name)
def get_loras():
try:
outputs_path = resolve_path_without_quotes(f"outputs")
files = os.listdir(outputs_path)
folders = [os.path.join(outputs_path, item) for item in files if os.path.isdir(os.path.join(outputs_path, item)) and item != "sample"]
folders.sort(key=lambda file: os.path.getctime(file), reverse=True)
return folders
except Exception as e:
return []
def get_samples(lora_name):
output_name = slugify(lora_name)
try:
samples_path = resolve_path_without_quotes(f"outputs/{output_name}/sample")
files = [os.path.join(samples_path, file) for file in os.listdir(samples_path)]
files.sort(key=lambda file: os.path.getctime(file), reverse=True)
return files
except:
return []
def start_training(
base_model,
lora_name,
train_script,
train_config,
sample_prompts,
):
# write custom script and toml
if not os.path.exists("models"):
os.makedirs("models", exist_ok=True)
if not os.path.exists("outputs"):
os.makedirs("outputs", exist_ok=True)
output_name = slugify(lora_name)
output_dir = resolve_path_without_quotes(f"outputs/{output_name}")
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
download(base_model)
file_type = "sh"
if sys.platform == "win32":
file_type = "bat"
sh_filename = f"train.{file_type}"
sh_filepath = resolve_path_without_quotes(f"outputs/{output_name}/{sh_filename}")
with open(sh_filepath, 'w', encoding="utf-8") as file:
file.write(train_script)
gr.Info(f"Generated train script at {sh_filename}")
dataset_path = resolve_path_without_quotes(f"outputs/{output_name}/dataset.toml")
with open(dataset_path, 'w', encoding="utf-8") as file:
file.write(train_config)
gr.Info(f"Generated dataset.toml")
sample_prompts_path = resolve_path_without_quotes(f"outputs/{output_name}/sample_prompts.txt")
with open(sample_prompts_path, 'w', encoding='utf-8') as file:
file.write(sample_prompts)
gr.Info(f"Generated sample_prompts.txt")
# Train
if sys.platform == "win32":
command = sh_filepath
else:
command = f"bash \"{sh_filepath}\""
# Use Popen to run the command and capture output in real-time
env = os.environ.copy()
env['PYTHONIOENCODING'] = 'utf-8'
env['LOG_LEVEL'] = 'DEBUG'
runner = LogsViewRunner()
cwd = os.path.dirname(os.path.abspath(__file__))
gr.Info(f"Started training")
yield from runner.run_command([command], cwd=cwd)
yield runner.log(f"Runner: {runner}")
# Generate Readme
config = toml.loads(train_config)
concept_sentence = config['datasets'][0]['subsets'][0]['class_tokens']
print(f"concept_sentence={concept_sentence}")
print(f"lora_name {lora_name}, concept_sentence={concept_sentence}, output_name={output_name}")
sample_prompts_path = resolve_path_without_quotes(f"outputs/{output_name}/sample_prompts.txt")
with open(sample_prompts_path, "r", encoding="utf-8") as f:
lines = f.readlines()
sample_prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
md = readme(base_model, lora_name, concept_sentence, sample_prompts)
readme_path = resolve_path_without_quotes(f"outputs/{output_name}/README.md")
with open(readme_path, "w", encoding="utf-8") as f:
f.write(md)
gr.Info(f"Training Complete. Check the outputs folder for the LoRA files.", duration=None)
def update(
base_model,
lora_name,
resolution,
seed,
workers,
class_tokens,
learning_rate,
network_dim,
max_train_epochs,
save_every_n_epochs,
timestep_sampling,
guidance_scale,
vram,
num_repeats,
sample_prompts,
sample_every_n_steps,
*advanced_components,
):
output_name = slugify(lora_name)
dataset_folder = str(f"datasets/{output_name}")
sh = gen_sh(
base_model,
output_name,
resolution,
seed,
workers,
learning_rate,
network_dim,
max_train_epochs,
save_every_n_epochs,
timestep_sampling,
guidance_scale,
vram,
sample_prompts,
sample_every_n_steps,
*advanced_components,
)
toml = gen_toml(
dataset_folder,
resolution,
class_tokens,
num_repeats
)
return gr.update(value=sh), gr.update(value=toml), dataset_folder
"""
demo.load(fn=loaded, js=js, outputs=[hf_token, hf_login, hf_logout, hf_account])
"""
def loaded():
global current_account
current_account = account_hf()
print(f"current_account={current_account}")
if current_account != None:
return gr.update(value=current_account["token"]), gr.update(visible=False), gr.update(visible=True), gr.update(value=current_account["account"], visible=True)
else:
return gr.update(value=""), gr.update(visible=True), gr.update(visible=False), gr.update(value="", visible=False)
def update_sample(concept_sentence):
return gr.update(value=concept_sentence)
def refresh_publish_tab():
loras = get_loras()
return gr.Dropdown(label="Trained LoRAs", choices=loras)
def init_advanced():
# if basic_args
basic_args = {
'pretrained_model_name_or_path',
'clip_l',
't5xxl',
'ae',
'cache_latents_to_disk',
'save_model_as',
'sdpa',
'persistent_data_loader_workers',
'max_data_loader_n_workers',
'seed',
'gradient_checkpointing',
'mixed_precision',
'save_precision',
'network_module',
'network_dim',
'learning_rate',
'cache_text_encoder_outputs',
'cache_text_encoder_outputs_to_disk',
'fp8_base',
'highvram',
'max_train_epochs',
'save_every_n_epochs',
'dataset_config',
'output_dir',
'output_name',
'timestep_sampling',
'discrete_flow_shift',
'model_prediction_type',
'guidance_scale',
'loss_type',
'optimizer_type',
'optimizer_args',
'lr_scheduler',
'sample_prompts',
'sample_every_n_steps',
'max_grad_norm',
'split_mode',
'network_args'
}
# generate a UI config
# if not in basic_args, create a simple form
parser = train_network.setup_parser()
flux_train_utils.add_flux_train_arguments(parser)
args_info = {}
for action in parser._actions:
if action.dest != 'help': # Skip the default help argument
# if the dest is included in basic_args
args_info[action.dest] = {
"action": action.option_strings, # Option strings like '--use_8bit_adam'
"type": action.type, # Type of the argument
"help": action.help, # Help message
"default": action.default, # Default value, if any
"required": action.required # Whether the argument is required
}
temp = []
for key in args_info:
temp.append({ 'key': key, 'action': args_info[key] })
temp.sort(key=lambda x: x['key'])
advanced_component_ids = []
advanced_components = []
for item in temp:
key = item['key']
action = item['action']
if key in basic_args:
print("")
else:
action_type = str(action['type'])
component = None
with gr.Column(min_width=300):
if action_type == "None":
# radio
component = gr.Checkbox()
# elif action_type == "<class 'str'>":
# component = gr.Textbox()
# elif action_type == "<class 'int'>":
# component = gr.Number(precision=0)
# elif action_type == "<class 'float'>":
# component = gr.Number()
# elif "int_or_float" in action_type:
# component = gr.Number()
else:
component = gr.Textbox(value="")
if component != None:
component.interactive = True
component.elem_id = action['action'][0]
component.label = component.elem_id
component.elem_classes = ["advanced"]
if action['help'] != None:
component.info = action['help']
advanced_components.append(component)
advanced_component_ids.append(component.elem_id)
return advanced_components, advanced_component_ids
theme = gr.themes.Monochrome(
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"],
)
css = """
@keyframes rotate {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
#advanced_options .advanced:nth-child(even) { background: rgba(0,0,100,0.04) !important; }
h1{font-family: georgia; font-style: italic; font-weight: bold; font-size: 30px; letter-spacing: -1px;}
h3{margin-top: 0}
.tabitem{border: 0px}
.group_padding{}
nav{position: fixed; top: 0; left: 0; right: 0; z-index: 1000; text-align: center; padding: 10px; box-sizing: border-box; display: flex; align-items: center; backdrop-filter: blur(10px); }
nav button { background: none; color: firebrick; font-weight: bold; border: 2px solid firebrick; padding: 5px 10px; border-radius: 5px; font-size: 14px; }
nav img { height: 40px; width: 40px; border-radius: 40px; }
nav img.rotate { animation: rotate 2s linear infinite; }
.flexible { flex-grow: 1; }
.tast-details { margin: 10px 0 !important; }
.toast-wrap { bottom: var(--size-4) !important; top: auto !important; border: none !important; backdrop-filter: blur(10px); }
.toast-title, .toast-text, .toast-icon, .toast-close { color: black !important; font-size: 14px; }
.toast-body { border: none !important; }
#terminal { box-shadow: none !important; margin-bottom: 25px; background: rgba(0,0,0,0.03); }
#terminal .generating { border: none !important; }
#terminal label { position: absolute !important; }
.tabs { margin-top: 50px; }
.hidden { display: none !important; }
.codemirror-wrapper .cm-line { font-size: 12px !important; }
label { font-weight: bold !important; }
#start_training.clicked { background: silver; color: black; }
"""
js = """
function() {
let autoscroll = document.querySelector("#autoscroll")
if (window.iidxx) {
window.clearInterval(window.iidxx);
}
window.iidxx = window.setInterval(function() {
let text=document.querySelector(".codemirror-wrapper .cm-line").innerText.trim()
let img = document.querySelector("#logo")
if (text.length > 0) {
autoscroll.classList.remove("hidden")
if (autoscroll.classList.contains("on")) {
autoscroll.textContent = "Autoscroll ON"
window.scrollTo(0, document.body.scrollHeight, { behavior: "smooth" });
img.classList.add("rotate")
} else {
autoscroll.textContent = "Autoscroll OFF"
img.classList.remove("rotate")
}
}
}, 500);
console.log("autoscroll", autoscroll)
autoscroll.addEventListener("click", (e) => {
autoscroll.classList.toggle("on")
})
function debounce(fn, delay) {
let timeoutId;
return function(...args) {
clearTimeout(timeoutId);
timeoutId = setTimeout(() => fn(...args), delay);
};
}
function handleClick() {
console.log("refresh")
document.querySelector("#refresh").click();
}
const debouncedClick = debounce(handleClick, 1000);
document.addEventListener("input", debouncedClick);
document.querySelector("#start_training").addEventListener("click", (e) => {
e.target.classList.add("clicked")
e.target.innerHTML = "Training..."
})
}
"""
current_account = account_hf()
print(f"current_account={current_account}")
with gr.Blocks(elem_id="app", theme=theme, css=css, fill_width=True) as demo:
with gr.Tabs() as tabs:
with gr.TabItem("Gym"):
output_components = []
with gr.Row():
gr.HTML("""<nav>
<img id='logo' src='/file=icon.png' width='80' height='80'>
<div class='flexible'></div>
<button id='autoscroll' class='on hidden'></button>
</nav>
""")
with gr.Row(elem_id='container'):
with gr.Column():
gr.Markdown(
"""# Step 1. LoRA Info
<p style="margin-top:0">Configure your LoRA train settings.</p>
""", elem_classes="group_padding")
lora_name = gr.Textbox(
label="The name of your LoRA",
info="This has to be a unique name",
placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
)
concept_sentence = gr.Textbox(
elem_id="--concept_sentence",
label="Trigger word/sentence",
info="Trigger word or sentence to be used",
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
interactive=True,
)
model_names = list(models.keys())
print(f"model_names={model_names}")
base_model = gr.Dropdown(label="Base model (edit the models.yaml file to add more to this list)", choices=model_names, value=model_names[0])
vram = gr.Radio(["20G", "16G", "12G" ], value="20G", label="VRAM", interactive=True)
num_repeats = gr.Number(value=10, precision=0, label="Repeat trains per image", interactive=True)
max_train_epochs = gr.Number(label="Max Train Epochs", value=16, interactive=True)
total_steps = gr.Number(0, interactive=False, label="Expected training steps")
sample_prompts = gr.Textbox("", lines=5, label="Sample Image Prompts (Separate with new lines)", interactive=True)
sample_every_n_steps = gr.Number(0, precision=0, label="Sample Image Every N Steps", interactive=True)
resolution = gr.Number(value=512, precision=0, label="Resize dataset images")
with gr.Column():
gr.Markdown(
"""# Step 2. Dataset
<p style="margin-top:0">Make sure the captions include the trigger word.</p>
""", elem_classes="group_padding")
with gr.Group():
images = gr.File(
file_types=["image", ".txt"],
label="Upload your images",
#info="If you want, you can also manually upload caption files that match the image names (example: img0.png => img0.txt)",
file_count="multiple",
interactive=True,
visible=True,
scale=1,
)
with gr.Group(visible=False) as captioning_area:
do_captioning = gr.Button("Add AI captions with Florence-2")
output_components.append(captioning_area)
#output_components = [captioning_area]
caption_list = []
for i in range(1, MAX_IMAGES + 1):
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
with locals()[f"captioning_row_{i}"]:
locals()[f"image_{i}"] = gr.Image(
type="filepath",
width=111,
height=111,
min_width=111,
interactive=False,
scale=2,
show_label=False,
show_share_button=False,
show_download_button=False,
)
locals()[f"caption_{i}"] = gr.Textbox(
label=f"Caption {i}", scale=15, interactive=True
)
output_components.append(locals()[f"captioning_row_{i}"])
output_components.append(locals()[f"image_{i}"])
output_components.append(locals()[f"caption_{i}"])
caption_list.append(locals()[f"caption_{i}"])
with gr.Column():
gr.Markdown(
"""# Step 3. Train
<p style="margin-top:0">Press start to start training.</p>
""", elem_classes="group_padding")
refresh = gr.Button("Refresh", elem_id="refresh", visible=False)
start = gr.Button("Start training", visible=False, elem_id="start_training")
output_components.append(start)
train_script = gr.Textbox(label="Train script", max_lines=100, interactive=True)
train_config = gr.Textbox(label="Train config", max_lines=100, interactive=True)
with gr.Accordion("Advanced options", elem_id='advanced_options', open=False):
with gr.Row():
with gr.Column(min_width=300):
seed = gr.Number(label="--seed", info="Seed", value=42, interactive=True)
with gr.Column(min_width=300):
workers = gr.Number(label="--max_data_loader_n_workers", info="Number of Workers", value=2, interactive=True)
with gr.Column(min_width=300):
learning_rate = gr.Textbox(label="--learning_rate", info="Learning Rate", value="8e-4", interactive=True)
with gr.Column(min_width=300):
save_every_n_epochs = gr.Number(label="--save_every_n_epochs", info="Save every N epochs", value=4, interactive=True)
with gr.Column(min_width=300):
guidance_scale = gr.Number(label="--guidance_scale", info="Guidance Scale", value=1.0, interactive=True)
with gr.Column(min_width=300):
timestep_sampling = gr.Textbox(label="--timestep_sampling", info="Timestep Sampling", value="shift", interactive=True)
with gr.Column(min_width=300):
network_dim = gr.Number(label="--network_dim", info="LoRA Rank", value=4, minimum=4, maximum=128, step=4, interactive=True)
advanced_components, advanced_component_ids = init_advanced()