forked from lbologna/olfactory_bulb_utils
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsim_dict_to_json.py
466 lines (385 loc) · 19.2 KB
/
sim_dict_to_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import pprint
import argparse
import os
import json
import shutil
from collections import OrderedDict
glom_cells_dict = {}
def map_glom_to_cells():
glom_id = list(range(0, 127))
mitr_x_glom = 5
tuft_x_glom = 10
num_mitr = 635
for i in glom_id:
glom_cells_dict[str(i)] = []
start_mitr = i * mitr_x_glom
end_mitr = i * mitr_x_glom + mitr_x_glom
start_tft = num_mitr + i * tuft_x_glom
end_tft = num_mitr + i * tuft_x_glom + tuft_x_glom
mitr = list(range(start_mitr, end_mitr))
tuft = list(range(start_tft, end_tft))
for m in mitr:
glom_cells_dict[str(i)].append(m)
for t in tuft:
glom_cells_dict[str(i)].append(t)
def generateGlomPositions(gloms):
'''
Reference:
{
geom : {diam:1,nseg:1}
glom 1 : {position:{x:_,y:_,z:_}}
glom 2 : {position:{x:_,y:_,z:_}}
glom 3 : {position:{x:_,y:_,z:_}}
...
glom 127 : {position:{x:_,y:_,z:_}}
}
{
"geom": {"diam": 100,"nseg": 1},
"0" : {"pos": {"x": 207.283,"y": 221.71,"z": 866.201}},
"1" : {"pos": {"x": 563.378,"y": 1699.8,"z": 1033.58}},
"2" : {"pos": {"x": 759.676,"y": 1839.35,"z": 863.402}},
"3" : {"pos": {"x": 1002.92,"y": 1799.8,"z": 605.69}},
'''
# load glomeruli positions (extracted from bulbdef.py)
glom_radius=50
glom_coord=[]
with open('realgloms.txt', 'r') as f:
l = f.readline()
while l:
tk = l.split()
p = ()
for _tk in tk:
p += (float(_tk), )
glom_coord.append(p)
l = f.readline()
# creating sections with equivalent names in the NetPyNE format to store its properties
netpyne_cell={}
netpyne_cell = {'geom':{'diam':2*glom_radius,'nseg':1}}
for i in gloms:
print('generating Glomeruli: ',i, '\tw/ coord-> x:',glom_coord[i][0],'y:',glom_coord[i][1],'z:',glom_coord[i][2],)
glom_dict = { i:
{ 'pos': { 'x':glom_coord[i][0],
'y':glom_coord[i][1],
'z':glom_coord[i][2],
},
}
}
netpyne_cell.update(glom_dict)
with open('./netpyne_cells/netpyne_glomeruli.json', 'w', encoding='utf-8') as f:
# json.dump(netpyne_cell, f, ensure_ascii=False)
json.dump(netpyne_cell, f, ensure_ascii=False, indent=4)
def generateMitraCells(gloms,mitrals):
'''
Reference:
{
"secs": {
"dend_0": {"geom": {"nseg": 4,"pt3d": [[x0,y0,z0,d0],[x1,y1,z1,d1],[x2,y2,z2,d2],[x3,y3,z3,d3]]}},
"dend_1": {"geom": {"nseg": 4,"pt3d": [[x0,y0,z0,d0],[x1,y1,z1,d1],[x2,y2,z2,d2],[x3,y3,z3,d3]]}},
...
"soma_0": {"geom": {"nseg": 4,"pt3d": [[x0,y0,z0,d0],[x1,y1,z1,d1],[x2,y2,z2,d2],[x3,y3,z3,d3]]}},
"apic_1": {"geom": {"nseg": 4,"pt3d": [[x0,y0,z0,d0],[x1,y1,z1,d1],[x2,y2,z2,d2],[x3,y3,z3,d3]]}},
"tuft_1": {"geom": {"nseg": 4,"pt3d": [[x0,y0,z0,d0],[x1,y1,z1,d1],[x2,y2,z2,d2],[x3,y3,z3,d3]]}},
...
'''
# parameters extracted from 'params.py'
# mitral GIDs
gid_mitral_begin = 0
Nmitral_per_glom = 5 # mitral per glomerolus
Nmitral = len(gloms) * Nmitral_per_glom
#[jv comment: creating GIDs for the middle tufted cells]
# middle tufted
gid_mtufted_begin = gid_mitral_begin+Nmitral
Nmtufted_per_glom = 2*Nmitral_per_glom # twice than mitral!
Nmtufted = len(gloms) * Nmtufted_per_glom
# gids
gids = set()
for glomid in gloms:
gids.update(list(range(glomid * Nmitral_per_glom, (glomid+1) * Nmitral_per_glom)) + \
list(range(glomid * Nmtufted_per_glom + gid_mtufted_begin, (glomid+1) * Nmtufted_per_glom + gid_mtufted_begin)))
gids.update(mitrals)
gid_list=list(gids)
gid_list.sort()
print('sim gids: ',gid_list)
import cellreader
for cell_gid in gid_list:
# print('Cell GID: \t',cell_gid)
cr=cellreader.CellReader('mitral_cell_library.car') # Joao library - same as mccells.car, but
# cr=cellreader.CellReader('mccells.car') # default mitral cells library
cell = cr.readcell(cell_gid)
# Adds a cell.name property in the cell object to facilitate NetPyNE conversion
for sec_type in cell.__dict__.keys():
for sec_num in range(len(cell.__dict__[sec_type])):
cell.__dict__[sec_type][sec_num].name=sec_type+'_'+str(sec_num)
hist = [0]*int(1040/40)
import misc
center = misc.centroid(cell.soma[0].points)
print('\nCell GID: \t',cell_gid,'\t N of comp | \t soma:', len(cell.soma),'\t dend:', len(cell.dend),'\t apic:', len(cell.apic),'\t tuft:', len(cell.tuft))
printSecInfo=False
if printSecInfo:
for ind_dnd,dnd in enumerate(cell.dend):
# cell.dend[ind_dnd].name='dend_'+str(ind_dnd)
for ind_p,p in enumerate(dnd.points):
d = misc.distance(p, center)
# hist[int(d/40)] += 1.
print('dend ',ind_dnd,'\t point ',ind_p,'\t pos (x,y,z):', p,'\t soma dist:',d)
for ind_api,api in enumerate(cell.apic):
for ind_p,p in enumerate(api.points):
d = misc.distance(p, center)
print('apic ',ind_api,'\t comp ',ind_p,'\t pos (x,y,z):', p,'\t soma dist:',d)
for ind_tuf,tuf in enumerate(cell.tuft):
for ind_p,p in enumerate(tuf.points):
d = misc.distance(p, center)
print('tuft ',ind_tuf,'\t comp ',ind_p,'\t pos (x,y,z):', p,'\t soma dist:',d)
# initializing a dictionary in NetPyNE format to store the cell properties
netpyne_cell = {'secs': {},'conds':{}}
# retrieving the compartments in dictionary format
for sec_type in cell.__dict__.keys():
# retrieving each compartment for a specific segment type (e.g. soma:(soma_0, soma_1), dend)
for sec_num in range(len(cell.__dict__[sec_type])):
# creating a name attribute for each compartment to make it easier to link with NetPyNE formating (e.g. cell.<segment>[index].name)
sec_name = sec_type+'_'+str(sec_num)
cell.__dict__[sec_type][sec_num].name=sec_name
pt3d_points=[]
[pt3d_points.append([p1,p2,p3,p4]) for p1,p2,p3,p4 in cell.__dict__[sec_type][sec_num].points]
# # creating sections with equivalent names in the NetPyNE format to store its properties
netpyne_cell['secs'][sec_name] = {
'geom': {
# 'L':1,
# 'diam': 1,
'nseg': int(len(pt3d_points)-1),
'pt3d':pt3d_points
},
}
import json
with open('./netpyne_cells/netpyne_mitral_cell_'+str(cell_gid)+'.json', 'w', encoding='utf-8') as f:
json.dump(netpyne_cell, f, ensure_ascii=False, indent=4)
def generateGranulePositions(gloms):
'''
Reference:
{
geom : {diam:1,nseg:1}
granule gid : {position:{x:_,y:_,z:_}}
granule gid : {position:{x:_,y:_,z:_}}
granule gid : {position:{x:_,y:_,z:_}}
...
granule gid : {position:{x:_,y:_,z:_}}
}
{
"geom": {"diam": 1, "nseg": 1},
"1905": {"pos": {"x": -646.0, "y": 1173.0, "z": -17.0}},
"1906": {"pos": {"x": -646.0, "y": 1173.0, "z": 0.0}},
...
}
'''
ggid2pos={}
pos2ggid={}
# load glomeruli positions (extracted from bulbdef.py)
with open('granules.txt', 'r') as fi:
line = fi.readline()
while line:
token = line.split()
# joao modification - the code was returning an error because it was missing a condition to exit the loop when it finishes reading
if len(line)<2:
break
# joao modification-end
gid = int(token[0])
pos = (float(token[1]), float(token[2]), float(token[3]))
ggid2pos.update({ gid:pos })
pos2ggid.update({ pos:gid })
line = fi.readline()
netpyne_cell={}
netpyne_cell = {'geom':{'diam':1,'nseg':1}}
for k in ggid2pos.keys():
# # creating sections with equivalent names in the NetPyNE format to store its properties
print('generating granule cell: ',k, '\tw/ coord-> x:',ggid2pos[k][0],'y:',ggid2pos[k][1],'z:',ggid2pos[k][2],)
granule_dict = { k:
{ 'pos': { 'x':ggid2pos[k][0],
'y':ggid2pos[k][1],
'z':ggid2pos[k][2],
},
}
}
netpyne_cell.update(granule_dict)
import json
with open('./netpyne_cells/netpyne_granule_cells.json', 'w', encoding='utf-8') as f:
json.dump(netpyne_cell, f, ensure_ascii=False)
# json.dump(netpyne_cell, f, ensure_ascii=False, indent=4)
def generateMitralGranuleSynapses(dictionary_fileName):
from bulbdict import BulbDict
dic = BulbDict(dictionary_fileName)
printDicFile=False
if printDicFile:[print(syn,dic.gid_dict[syn],'\n\n') for syn in dic.gid_dict.keys()]
'''
- GID reference for the synapses
The model creates a GID for each synapse, to work around the fact that 2 compartments share more that 2 synapses
OBS: THIS FILE ONLY GENERATE SYNAPSES IF THE GLOMERULI HAS BEEN SIMULATED IN THE MODEL, ONCE IT USES THE OUTPUT DATA IN '.dic' FILE
gid reference:
{
synapse_gid: (m/mt gid, section, weight(?)m/mt->g, granule gid, 0, weight(?)g->m/mt )
}
e.g.:
{
...
198688510: (959, 35, 0.9791666865348816, 195876, 0, 0.8675885796546936),
194165278: (959, 36, 0.2500004470348358, 178068, 0, 0.8759732842445374),
192622990: (959, 36, 0.7500013709068298, 171996, 0, 0.9216063022613525),
195622222: (959, 37, 0.24999994039535522, 183804, 0, 0.7420779466629028),
192684458: (959, 37, 0.7499998211860657, 172238, 0, 0.7902942895889282),
...
}
'''
netpyne_cell={}
netpyne_cell = {}
total_syns=len(dic.gid_dict.keys())
for ind,syn_gid in enumerate(dic.gid_dict.keys()):
# # creating sections with equivalent names in the NetPyNE format to store its properties
print('Converting synapses | syn #: ',ind,'\t synapses remaining: ',total_syns-ind ,'\t|\tsynapse gid: ',syn_gid,)# '\tw/ coord-> x:',dic.gid_dict[k][0],'y:',dic.gid_dict[k][1],'z:',dic.gid_dict[k][2],)
granule_dict = {syn_gid:dic.gid_dict[syn_gid]}
netpyne_cell.update(granule_dict)
import json
with open('./netpyne_synapses.json', 'w', encoding='utf-8') as f:
json.dump(netpyne_cell, f, ensure_ascii=False)
# json.dump(netpyne_cell, f, ensure_ascii=False, indent=4)
def generateMitralGranuleSynapses2(inputfolder, outputfolder, weightfn, dicfn, connfn, simcellfn, simglomfn):
shutil.copyfile(os.path.join(inputfolder, "granules.py"), os.path.join(outputfolder, "granules.py"))
shutil.copyfile(os.path.join(inputfolder, "params.py"), os.path.join(outputfolder, "params.py"))
shutil.copyfile(os.path.join(inputfolder, "args.py"), os.path.join(outputfolder, "args.py"))
shutil.copyfile(os.path.join(inputfolder, "realgloms.txt"), os.path.join(outputfolder, "realgloms.txt"))
shutil.copyfile(os.path.join(inputfolder, "misc.py"), os.path.join(outputfolder, "misc.py"))
from bulbdict_llb import BulbDict
dic = BulbDict(dicfn)
printDicFile = False
if printDicFile:
[print(syn, dic.gid_dict[syn], '\n\n') for syn in dic.gid_dict.keys()]
'''
- GID reference for the synapses
The model creates a GID for each synapse, to work around the fact that 2 compartments share more that 2 synapses
OBS: THIS FILE ONLY GENERATE SYNAPSES IF THE GLOMERULI HAS BEEN SIMULATED IN THE MODEL, ONCE IT USES THE OUTPUT DATA IN '.dic' FILE
gid reference:
{
synapse_gid: (m/mt gid, section, weight(?)m/mt->g, granule gid, 0, weight(?)g->m/mt )
}
e.g.:
{
...
198688510: (959, 35, 0.9791666865348816, 195876, 0, 0.8675885796546936),
194165278: (959, 36, 0.2500004470348358, 178068, 0, 0.8759732842445374),
192622990: (959, 36, 0.7500013709068298, 171996, 0, 0.9216063022613525),
195622222: (959, 37, 0.24999994039535522, 183804, 0, 0.7420779466629028),
192684458: (959, 37, 0.7499998211860657, 172238, 0, 0.7902942895889282),
...
}
'''
with open(weightfn, "r") as f:
weights = json.load(f)
simulated_cells = []
netpyne_cell = {}
all_connections = {}
total_syns = len(dic.gid_dict.keys())
for ind, syn_gid in enumerate(dic.gid_dict.keys()):
# creating sections with equivalent names in the NetPyNE format to store its properties
# print('Converting synapses | syn #: ', ind, '\t synapses remaining: ', total_syns-ind, '\t|\tsynapse gid: ', syn_gid,)# '\tw/ coord-> x:',dic.gid_dict[k][0],'y:',dic.gid_dict[k][1],'z:',dic.gid_dict[k][2],)
granule_dict = {syn_gid: dic.gid_dict[syn_gid]}
mt_cell = granule_dict[syn_gid][0]
sec = granule_dict[syn_gid][1]
pos_inh = round(granule_dict[syn_gid][2], 3)
pos_exc = round(granule_dict[syn_gid][5], 3)
gr_cell = granule_dict[syn_gid][3]
if mt_cell not in all_connections:
all_connections[mt_cell] = {}
if sec not in all_connections[mt_cell]:
all_connections[mt_cell][sec] = {}
if gr_cell not in all_connections[mt_cell][sec]:
all_connections[mt_cell][sec][gr_cell] = {"inh":[], "exc":[]}
syn_gid_str = str(syn_gid)
syn_gid_str_plus = str(syn_gid - 1)
if syn_gid_str in weights.keys():
all_connections[mt_cell][sec][gr_cell]["inh"].append(float(weights[syn_gid_str]))
all_connections[mt_cell][sec][gr_cell]["inh"].append(pos_inh)
if syn_gid_str_plus in weights.keys():
all_connections[mt_cell][sec][gr_cell]["exc"].append(float(weights[syn_gid_str_plus]))
all_connections[mt_cell][sec][gr_cell]["exc"].append(pos_exc)
if mt_cell not in simulated_cells:
simulated_cells.append(mt_cell)
simulated_cells_sorted = sorted(simulated_cells)
sim_gloms = []
for i in simulated_cells_sorted:
for k in glom_cells_dict:
if i in glom_cells_dict[k] and int(k) not in sim_gloms:
sim_gloms.append(int(k))
sim_gloms_sorted = sorted(sim_gloms)
with open(simglomfn, "w") as sgf:
json.dump({"sim_gloms": sim_gloms_sorted}, sgf)
with open(simcellfn, 'w') as sf:
json.dump({"sim_cells": simulated_cells_sorted}, sf)
with open(connfn, 'w', encoding='utf-8') as f:
#json.dump(all_connections, f, ensure_ascii=False, indent=4)
json.dump(all_connections, f, ensure_ascii=False)
def cat_weights(inputfolder, weightfilename):
'''
Concatenate the files containing the weight generated during the simulation
into a single file named weightfilename
'''
# initialized final weight dictionary
w_dict = {}
# read individual weights files and insert them into a dictionary
listdir = os.listdir(inputfolder)
print(inputfolder)
for i in listdir:
if "olfactory_bulb.weight.dat." in i:
with open(os.path.join(inputfolder, i), "r") as f:
all_lines = f.readlines()
for l in all_lines:
[gid, weight, cond] = l.split(" ")
if gid not in w_dict:
w_dict[gid] = float(weight)
w_dict_sorted = OrderedDict(sorted(w_dict.items()))
with open(weightfilename, "w") as dd:
json.dump(w_dict_sorted, dd)
return
def cat_dic(inputfolder, dicfilename):
# read individual .dic files, concatenate them and save the result file to storage
listdir = os.listdir(inputfolder)
fext = open(dicfilename, "wb")
for f in listdir:
if "olfactory_bulb.dic." in f:
fo = open(os.path.join(inputfolder, f), "rb")
shutil.copyfileobj(fo, fext)
fo.close()
fext.close()
def main():
parser = argparse.ArgumentParser(description = '''The sim_dict_to_json.py script ''' \
'''convert the dictionary printed as output of the olfactory bulb simulator ''' \
'''into a .json file containing information of the simulated mitral cells, ''' \
'''the relative granule cells and the synapses between these two cell types.''')
parser.add_argument("--inputfolder", type=str, required=False, default="./",
help="path to the folder containing the weight.dat and dictionary files -> e.g.: ./mysim/ - default: './ '")
parser.add_argument("--outputfolder", type=str, required=False, default="./output",
help="path to the output folder (if not present, it will be created) -> e.g.: ./my_results - default: './output'" )
args = parser.parse_args()
inputfolder = args.inputfolder
outputfolder = args.outputfolder
if not os.path.exists(outputfolder):
os.makedirs(outputfolder)
connectionsfilename = os.path.join(outputfolder, "connections.json")
weightfilename = os.path.join(outputfolder, "weights.json")
dicfilename = os.path.join(outputfolder, "bulb.dic")
simcellfilename = os.path.join(outputfolder, "simcells.json")
simglomfilename = os.path.join(outputfolder, "simgloms.json")
map_glom_to_cells()
cat_weights(inputfolder, weightfilename)
cat_dic(inputfolder, dicfilename)
generateMitralGranuleSynapses2(inputfolder, outputfolder, weightfilename,
dicfilename, connectionsfilename, simcellfilename,
simglomfilename)
#gloms=list(range(127)) # generate all mitral cells for a subset of glomeruli
# gloms=[5,7,30] # generate all mitral cells for a subset of glomeruli
#mitrals=[] # list to generate individual mitral cells (only in case it is not already created in the list of glomeruli)
# Generates a JSON file with the positions of the glomeruli
#generateGlomPositions(gloms)
#generateMitraCells(gloms,mitrals)
#generateGranulePositions(gloms)
#dictionary_fileName='olfactory_bulb.dic.00'
#generateMitralGranuleSynapses(dictionary_fileName)
if __name__ == "__main__":
main()