-
Notifications
You must be signed in to change notification settings - Fork 117
/
Copy pathembeddednf.c
416 lines (346 loc) · 11 KB
/
embeddednf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
//Copyright 2015 <>< Charles Lohr under the ColorChord License.
#include "embeddednf.h"
#include <stdio.h>
#include <string.h>
uint16_t folded_bins[FIXBPERO];
uint16_t fuzzed_bins[FIXBINS];
uint8_t note_peak_freqs[MAXNOTES];
uint16_t note_peak_amps[MAXNOTES];
uint16_t note_peak_amps2[MAXNOTES];
uint8_t note_jumped_to[MAXNOTES];
#ifndef PRECOMPUTE_FREQUENCY_TABLE
static const float bf_table[24] = {
1.000000, 1.029302, 1.059463, 1.090508, 1.122462, 1.155353,
1.189207, 1.224054, 1.259921, 1.296840, 1.334840, 1.373954,
1.414214, 1.455653, 1.498307, 1.542211, 1.587401, 1.633915,
1.681793, 1.731073, 1.781797, 1.834008, 1.887749, 1.943064 };
/* The above table was generated using the following code:
#include <stdio.h>
#include <math.h>
int main()
{
int i;
#define FIXBPERO 24
printf( "const float bf_table[%d] = {", FIXBPERO );
for( i = 0; i < FIXBPERO; i++ )
{
if( ( i % 6 ) == 0 )
printf( "\n\t" );
printf( "%f, ", pow( 2, (float)i / (float)FIXBPERO ) );
}
printf( "};\n" );
return 0;
}
*/
#endif
#define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))
void UpdateFreqs()
{
#ifndef PRECOMPUTE_FREQUENCY_TABLE
uint16_t fbins[FIXBPERO];
int i;
BUILD_BUG_ON( sizeof(bf_table) != FIXBPERO*4 );
//Warning: This does floating point. Avoid doing this frequently. If you
//absolutely cannot have floating point on your system, you may precompute
//this and store it as a table. It does preclude you from changing
//BASE_FREQ in runtime.
for( i = 0; i < FIXBPERO; i++ )
{
float frq = ( bf_table[i] * BASE_FREQ );
fbins[i] = ( 65536.0 ) / ( DFREQ ) * frq * 16 + 0.5;
}
#else
#define PCOMP( f ) (uint16_t)((65536.0)/(DFREQ) * (f * BASE_FREQ) * 16 + 0.5)
static const uint16_t fbins[FIXBPERO] = {
PCOMP( 1.000000 ), PCOMP( 1.029302 ), PCOMP( 1.059463 ), PCOMP( 1.090508 ), PCOMP( 1.122462 ), PCOMP( 1.155353 ),
PCOMP( 1.189207 ), PCOMP( 1.224054 ), PCOMP( 1.259921 ), PCOMP( 1.296840 ), PCOMP( 1.334840 ), PCOMP( 1.373954 ),
PCOMP( 1.414214 ), PCOMP( 1.455653 ), PCOMP( 1.498307 ), PCOMP( 1.542211 ), PCOMP( 1.587401 ), PCOMP( 1.633915 ),
PCOMP( 1.681793 ), PCOMP( 1.731073 ), PCOMP( 1.781797 ), PCOMP( 1.834008 ), PCOMP( 1.887749 ), PCOMP( 1.943064 ) };
#endif
#ifdef USE_32DFT
UpdateBins32( fbins );
#else
UpdateBinsForProgressiveIntegerSkippyInt( fbins );
#endif
}
void InitColorChord()
{
int i;
//Set up and initialize arrays.
for( i = 0; i < MAXNOTES; i++ )
{
note_peak_freqs[i] = 255;
note_peak_amps[i] = 0;
note_peak_amps2[i] = 0;
}
memset( folded_bins, 0, sizeof( folded_bins ) );
memset( fuzzed_bins, 0, sizeof( fuzzed_bins ) );
//Step 1: Initialize the Integer DFT.
#ifdef USE_32DFT
SetupDFTProgressive32();
#else
SetupDFTProgressiveIntegerSkippy();
#endif
//Step 2: Set up the frequency list. You could do this multiple times
//if you want to change the loadout of the frequencies.
UpdateFreqs();
}
void HandleFrameInfo()
{
int i, j, k;
uint8_t hitnotes[MAXNOTES];
memset( hitnotes, 0, sizeof( hitnotes ) );
#ifdef USE_32DFT
uint16_t * strens;
UpdateOutputBins32();
strens = embeddedbins32;
#else
uint16_t * strens = embeddedbins;
#endif
//Copy out the bins from the DFT to our fuzzed bins.
for( i = 0; i < FIXBINS; i++ )
{
fuzzed_bins[i] = (fuzzed_bins[i] + (strens[i]>>FUZZ_IIR_BITS) -
(fuzzed_bins[i]>>FUZZ_IIR_BITS));
}
//Taper first octave
for( i = 0; i < FIXBPERO; i++ )
{
uint32_t taperamt = (65536 / FIXBPERO) * i;
fuzzed_bins[i] = (taperamt * fuzzed_bins[i]) >> 16;
}
//Taper last octave
for( i = 0; i < FIXBPERO; i++ )
{
int newi = FIXBINS - i - 1;
uint32_t taperamt = (65536 / FIXBPERO) * i;
fuzzed_bins[newi] = (taperamt * fuzzed_bins[newi]) >> 16;
}
//Fold the bins from fuzzedbins into one octave.
for( i = 0; i < FIXBPERO; i++ )
folded_bins[i] = 0;
k = 0;
for( j = 0; j < OCTAVES; j++ )
{
for( i = 0; i < FIXBPERO; i++ )
{
folded_bins[i] += fuzzed_bins[k++];
}
}
//Now, we must blur the folded bins to get a good result.
//Sometimes you may notice every other bin being out-of
//line, and this fixes that. We may consider running this
//more than once, but in my experience, once is enough.
for( j = 0; j < FILTER_BLUR_PASSES; j++ )
{
//Extra scoping because this is a large on-stack buffer.
uint16_t folded_out[FIXBPERO];
uint8_t adjLeft = FIXBPERO-1;
uint8_t adjRight = 1;
for( i = 0; i < FIXBPERO; i++ )
{
uint16_t lbin = folded_bins[adjLeft]>>2;
uint16_t rbin = folded_bins[adjRight]>>2;
uint16_t tbin = folded_bins[i]>>1;
folded_out[i] = lbin + rbin + tbin;
//We do this funny dance to avoid a modulus operation. On some
//processors, a modulus operation is slow. This is cheap.
adjLeft++; if( adjLeft == FIXBPERO ) adjLeft = 0;
adjRight++; if( adjRight == FIXBPERO ) adjRight = 0;
}
for( i = 0; i < FIXBPERO; i++ )
{
folded_bins[i] = folded_out[i];
}
}
//Next, we have to find the peaks, this is what "decompose" does in our
//normal tool. As a warning, it expects that the values in foolded_bins
//do NOT exceed 32767.
{
uint8_t adjLeft = FIXBPERO-1;
uint8_t adjRight = 1;
for( i = 0; i < FIXBPERO; i++ )
{
int16_t prev = folded_bins[adjLeft];
int16_t next = folded_bins[adjRight];
int16_t this = folded_bins[i];
uint8_t thisfreq = i<<SEMIBITSPERBIN;
int16_t offset;
adjLeft++; if( adjLeft == FIXBPERO ) adjLeft = 0;
adjRight++; if( adjRight == FIXBPERO ) adjRight = 0;
if( this < MIN_AMP_FOR_NOTE ) continue;
if( prev > this || next > this ) continue;
if( prev == this && next == this ) continue;
//i is at a peak...
int32_t totaldiff = (( this - prev ) + ( this - next ));
int32_t porpdiffP = ((this-prev)<<16) / totaldiff; //close to 0 =
//closer to this side, 32768 = in the middle, 65535 away.
int32_t porpdiffN = ((this-next)<<16) / totaldiff;
if( porpdiffP < porpdiffN )
{
//Closer to prev.
offset = -(32768 - porpdiffP);
}
else
{
//Closer to next
offset = (32768 - porpdiffN);
}
//Need to round. That's what that extra +(15.. is in the center.
thisfreq += (offset+(1<<(15-SEMIBITSPERBIN)))>>(16-SEMIBITSPERBIN);
//In the event we went 'below zero' need to wrap to the top.
if( thisfreq > 255-(1<<SEMIBITSPERBIN) )
thisfreq = (1<<SEMIBITSPERBIN)*FIXBPERO - (256-thisfreq);
//Okay, we have a peak, and a frequency. Now, we need to search
//through the existing notes to see if we have any matches.
//If we have a note that's close enough, we will try to pull it
//closer to us and boost it.
int8_t lowest_found_free_note = -1;
int8_t closest_note_id = -1;
int16_t closest_note_distance = 32767;
for( j = 0; j < MAXNOTES; j++ )
{
uint8_t nf = note_peak_freqs[j];
if( nf == 255 )
{
if( lowest_found_free_note == -1 )
lowest_found_free_note = j;
continue;
}
int16_t distance = thisfreq - nf;
if( distance < 0 ) distance = -distance;
//Make sure that if we've wrapped around the right side of the
//array, we can detect it and loop it back.
if( distance > ((1<<(SEMIBITSPERBIN-1))*FIXBPERO) )
{
distance = ((1<<(SEMIBITSPERBIN))*FIXBPERO) - distance;
}
//If we find a note closer to where we are than any of the
//others, we can mark it as our desired note.
if( distance < closest_note_distance )
{
closest_note_id = j;
closest_note_distance = distance;
}
}
int8_t marked_note = -1;
if( closest_note_distance <= MAX_JUMP_DISTANCE )
{
//We found the note we need to augment.
note_peak_freqs[closest_note_id] = thisfreq;
marked_note = closest_note_id;
}
//The note was not found.
else if( lowest_found_free_note != -1 )
{
note_peak_freqs[lowest_found_free_note] = thisfreq;
marked_note = lowest_found_free_note;
}
//If we found a note to attach to, we have to use the IIR to
//increase the strength of the note, but we can't exactly snap
//it to the new strength.
if( marked_note != -1 )
{
hitnotes[marked_note] = 1;
note_peak_amps[marked_note] =
note_peak_amps[marked_note] -
(note_peak_amps[marked_note]>>AMP_1_IIR_BITS) +
(this>>(AMP_1_IIR_BITS-3));
note_peak_amps2[marked_note] =
note_peak_amps2[marked_note] -
(note_peak_amps2[marked_note]>>AMP_2_IIR_BITS) +
((this<<3)>>(AMP_2_IIR_BITS));
}
}
}
#if 0
for( i = 0; i < MAXNOTES; i++ )
{
if( note_peak_freqs[i] == 255 ) continue;
printf( "%d / ", note_peak_amps[i] );
}
printf( "\n" );
#endif
//Now we need to handle combining notes.
for( i = 0; i < MAXNOTES; i++ )
for( j = 0; j < i; j++ )
{
//We'd be combining nf2 (j) into nf1 (i) if they're close enough.
uint8_t nf1 = note_peak_freqs[i];
uint8_t nf2 = note_peak_freqs[j];
int16_t distance = nf1 - nf2;
if( nf1 == 255 || nf2 == 255 ) continue;
if( distance < 0 ) distance = -distance;
//If it wraps around above the halfway point, then we're closer to it
//on the other side.
if( distance > ((1<<(SEMIBITSPERBIN-1))*FIXBPERO) )
{
distance = ((1<<(SEMIBITSPERBIN))*FIXBPERO) - distance;
}
if( distance > MAX_COMBINE_DISTANCE )
{
continue;
}
int into;
int from;
if( note_peak_amps[i] > note_peak_amps[j] )
{
into = i;
from = j;
}
else
{
into = j;
from = i;
}
//We need to combine the notes. We need to move the new note freq
//towards the stronger of the two notes.
int16_t amp1 = note_peak_amps[into];
int16_t amp2 = note_peak_amps[from];
//0 to 32768 porportional to how much of amp1 we want.
uint32_t porp = (amp1<<15) / (amp1+amp2);
uint16_t newnote = (nf1 * porp + nf2 * (32768-porp))>>15;
//When combining notes, we have to use the stronger amplitude note.
//trying to average or combine the power of the notes looks awful.
note_peak_freqs[into] = newnote;
note_peak_amps[into] = (note_peak_amps[into]>note_peak_amps[from])?
note_peak_amps[into]:note_peak_amps[j];
note_peak_amps2[into] = (note_peak_amps2[into]>note_peak_amps2[from])?
note_peak_amps2[into]:note_peak_amps2[j];
note_peak_freqs[from] = 255;
note_peak_amps[from] = 0;
note_jumped_to[from] = i;
}
//For al lof the notes that have not been hit, we have to allow them to
//to decay. We only do this for notes that have not found a peak.
for( i = 0; i < MAXNOTES; i++ )
{
if( note_peak_freqs[i] == 255 || hitnotes[i] ) continue;
note_peak_amps[i] -= note_peak_amps[i]>>AMP_1_IIR_BITS;
note_peak_amps2[i] -= note_peak_amps2[i]>>AMP_2_IIR_BITS;
//In the event a note is not strong enough anymore, it is to be
//returned back into the great pool of unused notes.
if( note_peak_amps[i] < MINIMUM_AMP_FOR_NOTE_TO_DISAPPEAR )
{
note_peak_freqs[i] = 255;
note_peak_amps[i] = 0;
note_peak_amps2[i] = 0;
}
}
//We now have notes!!!
#if 0
for( i = 0; i < MAXNOTES; i++ )
{
if( note_peak_freqs[i] == 255 ) continue;
printf( "(%3d %4d %4d) ", note_peak_freqs[i], note_peak_amps[i], note_peak_amps2[i] );
}
printf( "\n") ;
#endif
#if 0
for( i = 0; i < FIXBPERO; i++ )
{
printf( "%4d ", folded_bins[i] );
}
printf( "\n" );
#endif
}