forked from szymanowiczs/splatter-image
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
185 lines (148 loc) · 7.75 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import json
import os
import sys
import tqdm
from omegaconf import OmegaConf
import lpips as lpips_lib
import torch
import torchvision
from torch.utils.data import DataLoader
from gaussian_renderer import render_predicted
from scene.gaussian_predictor import GaussianSplatPredictor
from scene.dataset_factory import get_dataset
from utils.loss_utils import ssim as ssim_fn
class Metricator():
def __init__(self, device):
self.lpips_net = lpips_lib.LPIPS(net='vgg').to(device)
def compute_metrics(self, image, target):
lpips = self.lpips_net( image.unsqueeze(0) * 2 - 1, target.unsqueeze(0) * 2 - 1).item()
psnr = -10 * torch.log10(torch.mean((image - target) ** 2, dim=[0, 1, 2])).item()
ssim = ssim_fn(image, target).item()
return psnr, ssim, lpips
@torch.no_grad()
def evaluate_dataset(model, dataloader, device, model_cfg, save_vis=0, out_folder=None
):
"""
Runs evaluation on the dataset passed in the dataloader.
Computes, prints and saves PSNR, SSIM, LPIPS.
Args:
save_vis: how many examples will have visualisations saved
"""
if save_vis > 0:
os.makedirs(out_folder, exist_ok=True)
with open("scores.txt", "w+") as f:
f.write("")
bg_color = [1, 1, 1] if model_cfg.data.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
# instantiate metricator
metricator = Metricator(device)
psnr_all_examples_novel = []
ssim_all_examples_novel = []
lpips_all_examples_novel = []
psnr_all_examples_cond = []
ssim_all_examples_cond = []
lpips_all_examples_cond = []
for d_idx, data in enumerate(tqdm.tqdm(dataloader)):
psnr_all_renders_novel = []
ssim_all_renders_novel = []
lpips_all_renders_novel = []
psnr_all_renders_cond = []
ssim_all_renders_cond = []
lpips_all_renders_cond = []
data = {k: v.to(device) for k, v in data.items()}
rot_transform_quats = data["source_cv2wT_quat"][:, :model_cfg.data.input_images]
if model_cfg.data.category == "hydrants" or model_cfg.data.category == "teddybears":
focals_pixels_pred = data["focals_pixels"][:, :model_cfg.data.input_images, ...]
else:
focals_pixels_pred = None
if model_cfg.data.origin_distances:
input_images = torch.cat([data["gt_images"][:, :model_cfg.data.input_images, ...],
data["origin_distances"][:, :model_cfg.data.input_images, ...]],
dim=2)
else:
input_images = data["gt_images"][:, :model_cfg.data.input_images, ...]
example_id = dataloader.dataset.get_example_id(d_idx)
if d_idx < save_vis:
out_example_gt = os.path.join(out_folder, "{}_".format(d_idx) + example_id + "_gt")
out_example = os.path.join(out_folder, "{}_".format(d_idx) + example_id)
os.makedirs(out_example_gt, exist_ok=True)
os.makedirs(out_example, exist_ok=True)
# batch has length 1, the first image is conditioning
reconstruction = model(input_images,
data["view_to_world_transforms"][:, :model_cfg.data.input_images, ...],
rot_transform_quats,
focals_pixels_pred)
for r_idx in range( data["gt_images"].shape[1]):
if "focals_pixels" in data.keys():
focals_pixels_render = data["focals_pixels"][0, r_idx]
else:
focals_pixels_render = None
image = render_predicted({k: v[0].contiguous() for k, v in reconstruction.items()},
data["world_view_transforms"][0, r_idx],
data["full_proj_transforms"][0, r_idx],
data["camera_centers"][0, r_idx],
background,
model_cfg,
focals_pixels=focals_pixels_render)["render"]
if d_idx < save_vis:
# vis_image_preds(reconstruction, out_example)
torchvision.utils.save_image(image, os.path.join(out_example, '{0:05d}'.format(r_idx) + ".png"))
torchvision.utils.save_image(data["gt_images"][0, r_idx, ...], os.path.join(out_example_gt, '{0:05d}'.format(r_idx) + ".png"))
# exclude non-foreground images from metric computation
if not torch.all(data["gt_images"][0, r_idx, ...] == 0):
psnr, ssim, lpips = metricator.compute_metrics(image, data["gt_images"][0, r_idx, ...])
if r_idx < model_cfg.data.input_images:
psnr_all_renders_cond.append(psnr)
ssim_all_renders_cond.append(ssim)
lpips_all_renders_cond.append(lpips)
else:
psnr_all_renders_novel.append(psnr)
ssim_all_renders_novel.append(ssim)
lpips_all_renders_novel.append(lpips)
psnr_all_examples_cond.append(sum(psnr_all_renders_cond) / len(psnr_all_renders_cond))
ssim_all_examples_cond.append(sum(ssim_all_renders_cond) / len(ssim_all_renders_cond))
lpips_all_examples_cond.append(sum(lpips_all_renders_cond) / len(lpips_all_renders_cond))
psnr_all_examples_novel.append(sum(psnr_all_renders_novel) / len(psnr_all_renders_novel))
ssim_all_examples_novel.append(sum(ssim_all_renders_novel) / len(ssim_all_renders_novel))
lpips_all_examples_novel.append(sum(lpips_all_renders_novel) / len(lpips_all_renders_novel))
with open("scores.txt", "a+") as f:
f.write("{}_".format(d_idx) + example_id + \
" " + str(psnr_all_examples_novel[-1]) + \
" " + str(ssim_all_examples_novel[-1]) + \
" " + str(lpips_all_examples_novel[-1]) + "\n")
scores = {"PSNR_cond": sum(psnr_all_examples_cond) / len(psnr_all_examples_cond),
"SSIM_cond": sum(ssim_all_examples_cond) / len(ssim_all_examples_cond),
"LPIPS_cond": sum(lpips_all_examples_cond) / len(lpips_all_examples_cond),
"PSNR_novel": sum(psnr_all_examples_novel) / len(psnr_all_examples_novel),
"SSIM_novel": sum(ssim_all_examples_novel) / len(ssim_all_examples_novel),
"LPIPS_novel": sum(lpips_all_examples_novel) / len(lpips_all_examples_novel)}
return scores
@torch.no_grad()
def main(experiment_path, device_idx, split='val', save_vis=0):
# set device and random seed
device = torch.device("cuda:{}".format(device_idx))
torch.cuda.set_device(device)
# load cfg
training_cfg = OmegaConf.load(os.path.join(experiment_path, ".hydra", "config.yaml"))
# load model
model = GaussianSplatPredictor(training_cfg)
ckpt_loaded = torch.load(os.path.join(experiment_path, "model_latest.pth"), map_location=device)
model.load_state_dict(ckpt_loaded["model_state_dict"])
model = model.to(device)
model.eval()
print('Loaded model!')
# instantiate dataset loader
dataset = get_dataset(training_cfg, split)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False,
persistent_workers=True, pin_memory=True, num_workers=1)
scores = evaluate_dataset(model, dataloader, device, training_cfg, save_vis=save_vis)
print(scores)
return scores
if __name__ == "__main__":
experiment_path = sys.argv[1]
split = 'test'
out_folder = 'out'
scores = main(experiment_path, 0, split=split, save_vis=0, out_folder=out_folder)
with open(os.path.join(experiment_path,
"{}_scores.json".format(split)), "w+") as f:
json.dump(scores, f, indent=4)