forked from bethsheets/palumbi_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_exons.py
executable file
·161 lines (140 loc) · 5.47 KB
/
extract_exons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python
#
# Copyright 2015, Daehwan Kim <[email protected]>
#
# This file is part of HISAT 2.
#
# HISAT 2 is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# HISAT 2 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with HISAT 2. If not, see <http://www.gnu.org/licenses/>.
#
from __future__ import print_function
from sys import stderr, exit
from collections import defaultdict as dd, Counter
from argparse import ArgumentParser, FileType
def extract_exons(gtf_file, verbose = False):
genes = dd(list)
trans = {}
# Parse valid exon lines from the GTF file into a dict by transcript_id
for line in gtf_file:
line = line.strip()
if not line or line.startswith('#'):
continue
if '#' in line:
line = line.split('#')[0].strip()
try:
chrom, source, feature, left, right, score, \
strand, frame, values = line.split('\t')
except ValueError:
continue
left, right = int(left), int(right)
if feature != 'exon' or left >= right:
continue
values_dict = {}
for attr in values.split(';')[:-1]:
attr, _, val = attr.strip().partition(' ')
values_dict[attr] = val.strip('"')
if 'gene_id' not in values_dict or \
'transcript_id' not in values_dict:
continue
transcript_id = values_dict['transcript_id']
if transcript_id not in trans:
trans[transcript_id] = [chrom, strand, [[left, right]]]
genes[values_dict['gene_id']].append(transcript_id)
else:
trans[transcript_id][2].append([left, right])
# Sort exons and merge where separating introns are <=5 bps
for tran, [chrom, strand, exons] in trans.items():
exons.sort()
tmp_exons = [exons[0]]
for i in range(1, len(exons)):
if exons[i][0] - tmp_exons[-1][1] <= 5:
tmp_exons[-1][1] = exons[i][1]
else:
tmp_exons.append(exons[i])
trans[tran] = [chrom, strand, tmp_exons]
# Calculate and print the unique junctions
tmp_exons = set()
for chrom, strand, texons in trans.values():
for i in range(len(texons)):
tmp_exons.add((chrom, texons[i][0], texons[i][1], strand))
tmp_exons = sorted(tmp_exons)
if len(tmp_exons) <= 0:
return
exons = [tmp_exons[0]]
for exon in tmp_exons[1:]:
prev_exon = exons[-1]
if exon[0] != prev_exon[0]:
exons.append(exon)
continue
assert prev_exon[1] <= exon[1]
if prev_exon[2] < exon[1]:
exons.append(exon)
continue
if prev_exon[2] < exon[2]:
strand = prev_exon[3]
if strand not in "+-":
strand = exon[3]
exons[-1] = (prev_exon[0], prev_exon[1], exon[2], strand)
for chrom, left, right, strand in exons:
# Zero-based offset
print('{}\t{}\t{}\t{}'.format(chrom, left-1, right-1, strand))
# Print some stats if asked
if verbose:
None
"""
exon_lengths, intron_lengths, trans_lengths = \
Counter(), Counter(), Counter()
for chrom, strand, exons in trans.values():
tran_len = 0
for i, exon in enumerate(exons):
exon_len = exon[1]-exon[0]+1
exon_lengths[exon_len] += 1
tran_len += exon_len
if i == 0:
continue
intron_lengths[exon[0] - exons[i-1][1]] += 1
trans_lengths[tran_len] += 1
print('genes: {}, genes with multiple isoforms: {}'.format(
len(genes), sum(len(v) > 1 for v in genes.values())),
file=stderr)
print('transcripts: {}, transcript avg. length: {:d}'.format(
len(trans), sum(trans_lengths.elements())/len(trans)),
file=stderr)
print('exons: {}, exon avg. length: {:d}'.format(
sum(exon_lengths.values()),
sum(exon_lengths.elements())/sum(exon_lengths.values())),
file=stderr)
print('introns: {}, intron avg. length: {:d}'.format(
sum(intron_lengths.values()),
sum(intron_lengths.elements())/sum(intron_lengths.values())),
file=stderr)
print('average number of exons per transcript: {:d}'.format(
sum(exon_lengths.values())/len(trans)),
file=stderr)
"""
if __name__ == '__main__':
parser = ArgumentParser(
description='Extract exons from a GTF file')
parser.add_argument('gtf_file',
nargs='?',
type=FileType('r'),
help='input GTF file (use "-" for stdin)')
parser.add_argument('-v', '--verbose',
dest='verbose',
action='store_true',
help='also print some statistics to stderr')
args = parser.parse_args()
if not args.gtf_file:
parser.print_help()
exit(1)
extract_exons(args.gtf_file, args.verbose)