-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfairness.py
36 lines (31 loc) · 1.21 KB
/
fairness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import utils
import numpy as np
import fairlearn.metrics as fairmets
from sklearn.metrics import accuracy_score
import pandas as pd
metrics_dict = {
'Accuracy': accuracy_score,
'Selection rate': fairmets.selection_rate,
'Count': fairmets.count,
'tpr': fairmets.true_positive_rate,
'tnr': fairmets.true_negative_rate,
'fpr': fairmets.false_positive_rate,
'fnr': fairmets.false_negative_rate
}
def eval_classifier(labels, preds, sensitive):
mf2 = fairmets.MetricFrame(metrics=metrics_dict, y_true=labels, y_pred=preds, sensitive_features=sensitive)
by_group = mf2.by_group
mf3 = pd.DataFrame({'difference': mf2.difference(),
'ratio': mf2.ratio(),
'group_min': mf2.group_min(),
'group_max': mf2.group_max(),
'group_0': by_group.iloc[0],
'group_1': by_group.iloc[1]}).T
mf3_data = mf3.to_numpy().flatten()
label_list = []
for rown in mf3.index.to_list():
for cname in mf3.columns.to_list():
label_list.append(f"{rown}_{cname}")
overall_labels = mf2.overall.index.to_list()
overall = mf2.overall.to_numpy().flatten()
return [label_list, mf3_data, overall_labels, overall]